Skip to main content
Log in

Light-harvesting complexes communicate growth and physiology of plants

  • Review Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Light-harvesting complexes (LHCs) regulate light-controlled energy production during photosynthesis process in plants. The proteins related to LHCs co-ordinate molecules into the light antenna structures. Although, structural information and genes related to the LHCs were studied. There is a gap remaining to certify the function of LHCs on the growth and physiology of plants. In the recent year, LHCs progressively increase the functional activities in the plants, which gain interest and importance to the researchers due to the ability of plants to respond and acclimate to the environmental conditions due to climate changes. To date, information is still being presented regarding the function of LHCs on growth and physiology of plants. This mini-review highlights the improvements made among LHCs on growth and physiological processes of plants through which glutathione (GSH), chlorophyll content, photosynthesis and nonphotochemical quenching act in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts, B., Johnson, A., Lewis, J., et al. (2002). Molecular biology of the cell (4th ed.). New York. http://www.ncbi.nlm.nih.gov/books/NBK26819/. Accessed 02 Dec 2015. 

  • Anderson, J. M., Chow, W. S., & Goodchild, D. J. (1988). Thylakoid membrane organization in sun/shade acclimation. Australian Journal of Plant Physiology, 15, 11–26.

    Article  Google Scholar 

  • Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141, 391–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballottari, M., Dall’Osto, L., Morosinotto, T., & Bassi, R. (2007). Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. The Journal of biological chemistry, 282, 8947–8958.

    Article  CAS  PubMed  Google Scholar 

  • Barber, J. (1995). Molecular Basis of the Vulnerability of Photosystem II to Damage by Light. Australian Journal of Plant Physiology, 22, 201–208.

    Article  CAS  Google Scholar 

  • Barber, J. (2006). Photosystem II: An enzyme of global significance. Biochemical Society Transactions, 34, 619–631.

    Article  CAS  PubMed  Google Scholar 

  • Barros, T., & Kühlbrandt, W. (2009). Crystallisation, structure and function of plant light-harvesting complex II. Biochimica et Biophysica Acta, 1787, 753–772.

    Article  CAS  PubMed  Google Scholar 

  • Bartoli, C. G., Tambussi, E. A., Diego, F., & Foyer, C. H. (2009). Control of ascorbic acid synthesis and accumulation and glutathione by the incident light red/far red ratio in Phaseolus vulgaris leaves. FEBS Letter, 583, 118–122.

    Article  CAS  Google Scholar 

  • Björkman, O., & Demmig-Adams, B. (1995). Regulation of photosynthetic light energy capture, conversion and dissipation in leaves of higher plants. In E. D. Schulze & M. M. Caldwell (Eds.), Ecophysiology of photosynthesis: Ecological studies. Berlin: Springer.

    Google Scholar 

  • Bonente, G., Howes, B. D., Caffarri, S., Smulevich, G., & Bassi, R. (2008). Interactions between the photosystem II subunit PsbS and xanthophylls studied in vivo and in vitro. Journal of Biological Chemistry, 283, 8434–8445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caffarri, S., Kouril, R., Kereïche, S., Boekema, E. J., & Croce, R. (2009). Functional architecture of higher plant photosystem II supercomplexes. The EMBO Journal, 28, 3052–3063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper, G. M. (2000). The cell: A molecular approach (2nd ed.). Sunderland, MA: Sinauer Associates. Photosynthesis. http://www.ncbi.nlm.nih.gov/books/NBK9861/. Accessed 17 Nov 2015.

  • Croce, R., & van Amerongen, H. (2011). Light-harvesting and structural organization of photosystem II: From individual complexes to thylakoid membrane. Journal of Photochemistry and Photobiology B: Biology, 104, 142–153.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B., Garab, G., Adams, W., III, & Govindgee, (2014). Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria (Vol. 40)., Advances in photosynthesis and respiration Dordrecht: Springer.

    Google Scholar 

  • Eberhard, S., Finazzi, G., & Wollman, F. A. (2008). The dynamics of photosynthesis. Annual Review of Genetics, 42, 463–515.

    Article  CAS  PubMed  Google Scholar 

  • Fleming, G. R., Schlau-Cohen, G. S., Amarnath, K., & Zaks, J. (2012). Design principles of photosynthetic light-harvesting. Farad Discussion, 155, 27–41.

    Article  CAS  Google Scholar 

  • Foyer, C. H., & Harbinson, J. (1999). Relationships between antioxidant metabolism and carotenoids in the regulation of photosynthesis (pp. 305–325). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Ganeteg, U., Külheim, C., Andersson, J., & Jansson, S. (2004). Is each light-harvesting complex protein important for plant fitness? Plant Physiology, 134, 502–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerotto, C., Alboresi, A., Giacometti, G. M., Bassi, R., & Morosinotto, T. (2012). Coexistence of plant and algal energy dissipation mechanisms in the moss Physcomitrella patens. New Phytology, 196, 763–773.

    Article  CAS  Google Scholar 

  • Ghirardi, M. L., McCauley, S. W., & Melis, A. (1986). Photochemical apparatus organization in the thylakoid membrane of Hordeum vulgare wild type and chlorophyll b-less chlorina f2 mutant. Biochimica et Biophysica Acta, 851, 331–339.

    Article  CAS  Google Scholar 

  • Hirth, M., Dietzel, L., Steiner, S., Ludwig, R., Weidenbach, H., Pfalz, J., et al. (2013). Photosynthetic acclimation responses of maize seedlings grown under artificial laboratory light gradients mimicking natural canopy conditions. Frontiers in Plant Science, 4, 1–12.

    Article  Google Scholar 

  • Inani, N., Nozulaidi, M., Khairi, M., Abdulkadir, A. R., & Jahan, M. S. (2015). Glutathione functions on physiological characters of corn plants to enhance Mn-induced corn production. Pertanika Journal of Tropical Agricultural Science, 38, 509–518.

    Google Scholar 

  • Jahan, M. S., Nakamura, Y., & Murata, Y. (2011). Histochemical quantification of GSH contents in guard cells of Arabidopsis thaliana. Science Asia, 37, 291–295.

    Article  Google Scholar 

  • Jahan, M. S., Nozulaidi, M., Khairi, M., & Mat, N. (2016). Light-harvesting complexes in photosystem II regulate glutathione-induced sensitivity of Arabidopsis guard cells to abscisic acid. Journal of Plant Physiology, 195, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Jahan, M. S., Nozulaidi, M., Khandaker, M. M., Afifah, A., & Husna, N. (2014). Control of plant growth and water loss by a lack of light-harvesting complexes in photosystem-II in Arabidopsis thaliana ch1-1 mutant. Acta Physiologia Plantarum, 36, 1627–1635.

    Article  CAS  Google Scholar 

  • Jahan, M. S., Ogawa, K., Nakamura, Y., Shimoishi, Y., Mori, I. C., & Murata, Y. (2008). Deficient glutathione in guard cells facilitates abscisic acid-induced stomatal closure but does not affect light-induced stomatal opening. Bioscience Biotechnology Biochemistry, 72, 2795–2798.

    Article  CAS  Google Scholar 

  • Jansson, S., Stefansson, H., Nystrom, U., Gustafsson, P., & Albertsson, P. A. (1997). Antenna protein composition of PS I and PS II in thylakoid sub-domains. Biochimica et Biophysica Acta, 1320, 297–309.

    Article  CAS  Google Scholar 

  • Johnson, M. P., Goral, T. K., Duffy, C. D. P., Brain, A. P. R., Mullineaux, C. W., & Ruban, A. V. (2011). Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell, 23, 1468–1479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khairi, M., Nozulaidi, M., Afifah, A., & Jahan, M. S. (2015). Effect of various water regimes on rice production in lowland irrigation. Australian Journal of Crop Science, 9, 153–159.

    CAS  Google Scholar 

  • Kouril, R., Zygadlo, A., Arteni, A. A., de Wit, C. D., Dekker, J. P., Jensen, P. E., et al. (2005). Structural characterization of a complex of photosystem I and light-harvesting complex II of Arabidopsis thaliana. Biochemistry, 44, 10935–10940.

    Article  CAS  PubMed  Google Scholar 

  • Kramer, D., Bassi, R., Li, X. P., Gilmore, A. M., Caffarri, S., Golan, T., et al. (2004). Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. Journal of Biological Chemistry, 279, 22866–22874.

    Article  PubMed  Google Scholar 

  • Krol, M., Spangfort, M. D., Huner, N. P. A., Oquist, G., Gustafsson, P., & Jansson, S. (1995). Chlorophyll a/b-binding proteins, pigment con- version, and early light-induced proteins in chlorophyll b-less barley mutant. Plant Physiology, 107, 873–883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X. P., Björkman, O., Shih, C., Grossman, A. R., Rosenquist, M., Jansson, S., et al. (2000). A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature, 403, 391–395.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X. D., & Shen, Y. G. (2004). NaCl-induced phosphorylation of light harvesting chlorophyll a/b proteins in thylakoid membranes from the halotolerant green alga, Dunaliella salina. FEBS Letter, 569, 337–340.

    Article  CAS  Google Scholar 

  • Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—A practical guide. Journal of Experimental Botany, 51, 659–668.

    Article  CAS  PubMed  Google Scholar 

  • Minagawa, J. (2011). State transitions—The molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast. Biochimica et Biophysica Acta, 1807, 897–905.

    Article  CAS  PubMed  Google Scholar 

  • Müller, P., Li, X. P., & Niyogi, K. K. (2004). Update on photosynthesis: Non-photochemical quenching. A response to excess light energy. Plant Physiology, 125, 1558–1566.

    Article  Google Scholar 

  • Munemasa, S., Muroyama, D., Nagahashi, H., Nakamura, Y., Mori, I. C., & Murata, Y. (2013). Regulation of reactive oxygen species-mediated abscisic acid signaling in guard cells and drought tolerance by glutathione. Frontiers in Plant Science, 4, 472.

    Article  PubMed  PubMed Central  Google Scholar 

  • Munirah, N., Jahan, M. S., & Nashriyah, M. (2015). N-acetylcysteine and Zn regulate corn yield. Science Asia, 41, 246–250.

    Article  CAS  Google Scholar 

  • Murray, D. L., & Kohorn, B. D. (1991). Chloroplasts of Arabidopsis thaliana homozygous for the ch-1 locus lack chlorophyll b, lack stable LHCPII and have stacked thylakoids. Plant Molecular Biology, 16, 71–79.

    Article  CAS  PubMed  Google Scholar 

  • Neff, M. M., Fankhauser, C., & Chory, J. (2000). Light: An indicator of time and place. Genes and Development, 4, 257–271.

    Google Scholar 

  • Nelson, N., & Ben-Shem, A. (2004). The complex architecture of oxygenic photosynthesis. Nature Reviews Molecular Cell Biology, 5, 971–982.

    Article  CAS  PubMed  Google Scholar 

  • Niyogi, K. K. (1999). Photoprotection revisited: Genetic and molecular approaches. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 333–359.

    Article  CAS  PubMed  Google Scholar 

  • Noctor, G., Mhamdi, A., Chaouch, S., Han, Y. I., Neukermans, J., Marquez-Garcia, B. E. L. E. N., et al. (2012). Glutathione in plants: An integrated overview. Plant, Cell and Environment, 35, 454–484.

    Article  CAS  PubMed  Google Scholar 

  • Nozulaidi, M., Jahan, M. S., Khairi, M., Khandaker, M. M., Nashriyah, M., & Khanif, Y. M. (2015). N-acetylcysteine increased rice yield. Turkish Journal of Agriculture and Forestrry, 39, 204–211.

    Article  CAS  Google Scholar 

  • Ogawa, K. (2005). Glutathione-associated regulation of plant growth and stress responses. Antioxident Redox Signaling, 7, 973–981.

    Article  CAS  Google Scholar 

  • Ogawa, K., Hatano-Iwasaki, A., Yanagida, M., & Iwabuchi, M. (2004). Level of glutathione is regulated by ATP-dependent ligation of glutamate and cysteine through in Arabidopsis thaliana: Mechanism of strong interaction of light intensity with flowering. Plant Cell and Physiology, 45, 1–8.

    Article  CAS  Google Scholar 

  • Okuma, E., Jahan, M. S., Munemasa, S., Ogawa, K., Watanabe-Sugimoto, M., Nakamura, Y., et al. (2011). Negative regulation of abscisic acid-induced stomatal closure by glutathione in Arabidopsis. Journal of Plant Physiology, 168, 2048–2055.

    Article  CAS  PubMed  Google Scholar 

  • Ort, D. R., & Yocum, C. F. (1996). Oxygenic photosysthesis: The light reaction. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Oster, U., Tanaka. R., Tanaka. A., & Rüdiger, W. (2000). Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant Journal, 21, 305–310.

    Article  CAS  PubMed  Google Scholar 

  • Ozawa, S., Onishi, T., & Takahashi, Y. (2010). Identification and characterization of an assembly intermediate subcomplex of photosystem I in the green alga Chlamydomonas reinhardtii. The Journal of biological chemistry, 285, 20072–20079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, L., Fukao, Y., Fujiwara, M., Takami, T., & Shikanai, T. (2009). Efficient operation of NAD(P)H dehydrogenase requires supercomplex formation with photosystem I via minor LHCI in Arabidopsis. Plant Cell, 21, 3623–3640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinnola, A., Dall’Osto, L., Gerotto, C., Morosinotto, T., Bassi, R., & Alboresi, A. (2013). Zeaxanthin binds to light-harvesting complex stress related protein to enhance nonphotochemical quenching in Physcomitrella patens. Plant Cell, 25, 3519–3534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preiss, S., & Thornber, J. P. (1995). Stability of the apoproteins of light-harvesting complex I and II during biogenesis of thylakoids in the chlorophyll b-less barley mutant chlorina f2. Plant Physiology, 107, 709–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Queval, G., Issakidis-Bourguet, E., Hoeberichts, F. A., Vandorpe, M., Gakière, B., Vanacker, H., et al. (2007). Conditional oxidative stress responses in theArabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength-dependent gene expression and define photoperiod as a crucial factor in the regulation of H2O2-induced cell death. Plant Journal, 52, 640–657.

    Article  CAS  PubMed  Google Scholar 

  • Schmid, V. H. R. (2008). Light-harvesting complexes of vascular plants. Cellular and Molecular Life Sciences, 65, 3619–3639.

    Article  CAS  PubMed  Google Scholar 

  • Schubert, N., García-Mendoza, E., & Pacheco-Ruiz, I. (2006). Carotenoid composition of marine red algae. The Journal of Phycology, 42, 1208–1216.

    Article  CAS  Google Scholar 

  • Stadler, R., Wright, K. M., Lauterbach, C., Amon, G., Gahrtz, M., Feuerstein, A., et al. (2005). Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots. Plant Journal, 41, 319–331.

    Article  CAS  PubMed  Google Scholar 

  • Syuhada, N., & Jahan, M. J. (2016). Glutathione functions onphysiological characters to increase copper-induced corn production. Russian Agriculture Science, 42, 111–116.

    Google Scholar 

  • Takabayashi, A., Kurihara, K., Kuwano, M., Kasahara, Y., Tanaka, R., & Tanaka, A. (2011). The oligomeric states of the photosystems and the light-harvesting complexes in the Chl b-less mutant. Plant Cell and Physiology, 52, 2103–2114.

    Article  CAS  Google Scholar 

  • Takahashi, S., & Badger, M. R. (2011). Photoprotection in plants: A new light on photosystem II damage. Trends Plant Science, 16, 53–60.

    Article  CAS  Google Scholar 

  • Takahashi, H., Iwai, M., Takahashi, Y., & Minagawa, J. (2006). Identification of the mobile light-harvesting complex II polypeptides for state transitions in Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the United States of America, 103, 477–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka, A., Ito, H., Tanaka, R., Yoshida, K., & Okada, K. (1998). Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proceedings of the National Academy of Sciences of the United States of America, 95, 12719–12723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka, R., & Tanaka, A. (2005). Effects of chlorophyllide a oxygenase overexpression on light acclimation in Arabidopsis thaliana. Photosynthesis Research, 85, 327–340.

    Article  CAS  PubMed  Google Scholar 

  • Tepperman, J. M., Zhu, T., Chang, H.-S., Wang, X., & Quail, P. H. (2001). Multiple transcription-factor genes are early targets of phytochrome A signalling. Proceedings of the National Academy of Sciences of the United States of America, 98, 9437–9442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voet, D., & Voet, J. G. (2011). Biochemistry (4th ed., p. 906). New York: Wiley.

    Google Scholar 

  • Wilk, L., Grunwald, M., Liao, P. N., Walla, P. J., & Kühlbrandt, W. (2013). Direct interaction of the major light-harvesting complex II and PsbS in nonphotochemical quenching. Proceedings of the National Academy of Sciences of the United States of America, 110, 5452–5456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasato, A., Nagata, N., Tanaka, R., & Tanaka, A. (2005). The N-terminal domain of chlorophyllide a oxygenase confers protein instability in response to chlorophyll B accumulation in Arabidopsis. Plant Cell, 17, 1585–1597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the FRGS funding (FRGS/2/2014/STWN03/UNISZA/02/1) and the Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Terengganu, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Sarwar Jahan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahan, M., Hasan, M. Light-harvesting complexes communicate growth and physiology of plants. Ind J Plant Physiol. 23, 1–6 (2018). https://doi.org/10.1007/s40502-017-0325-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-017-0325-9

Keywords

Navigation