Skip to main content
Log in

Bulked line analysis: a useful tool to identify microsatellite markers linked to drought tolerance in rice

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Eighty rice germplasm collections were used to study the variation in root traits and water use efficiency (WUE based on ∆13C value) for two seasons. Deep and shallow root genotypes were selected on the basis of phenotypic data. Similarly based upon ∆13C values, high and low WUE plant types were selected. Basis of selection for BLA being, the genotype with extreme values on either side of the grand mean is given as either positive (+) negative (−) sign for each trait studied. The genotypes which has scored nearer value to either side of the grand mean is omitted and were not considered for bulking in order to have two very distinct bulks amongst the genotypes. Varieties identified for deep and thick roots were Chuvanna modan (Ptb 30), Ptb1 (Aryan), Ptb2 (Ponnaryan), Ptb 6 (Athikkiraya) and Ptb15 (Kavunginpoothala). Varieties identified for high WUE (based on ∆13C value) were Ptb5 (Veluthari kayama), Ptb7 (Parambuvattan), Ptb9 (Thavalakannan), Ptb10 (Thekkancheera) and Ptb19 (Athikiraya). Selected genotypes were used for molecular characterization using microsatellite markers. A total of 216 microsatellite markers representing 12 different chromosomes were selected for genotyping. DNA from each group were bulked together for bulked line analysis of root traits and WUE. RM 202 showed polymorphism between deep root and shallow root bulked DNA. For WUE, RM313 is polymorphic between the high and low WUE genotypes. Although the BLA method cannot be used directly to localize genes, it is useful for the identification of DNA markers that are associated with the target gene. Through such markers, the linked trait can be precisely localized if the markers used have been previously mapped.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bimpong, I. K., Serraj, R., Chin, J. H., Ramos, J., Mendoza, E. M. T., Hernandez, J. E., et al. (2011). Identification of QTLs for drought-related traits in alien introgression lines derived from crosses of rice (Oryza sativa cv. IR64 × O. glaberrima) under lowland moisture stress. Journal of Plant Biolology, 54, 237–250.

    Article  Google Scholar 

  • FAO [Food and Agriculture Organization] Rome. (2011). http://faostat.fao.org/.

  • Farquhar, G. D., Ehleriner, J. R., & Hubick, K. T. (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology Plant Molecular Biology, 40, 503–537.

    Article  CAS  Google Scholar 

  • Farquhar, G. D., O’Leary, M. H., & Berry, J. A. (1982). On the relationship between carbon isotope discrimination and the intercellular CO2 concentration in leaves. Australian Journal of Plant Physiology, 9, 121–131.

    Article  CAS  Google Scholar 

  • Febrero, A., Fernandez, S., Molino-Cano, J. L., & Araus, J. S. (1998). Yield, carbon isotope discrimination, canopy reflectance and cuticular conductance of barley isolines of differing glaucousness. Journal of Experimental Botany, 49, 1575–1581.

    Article  CAS  Google Scholar 

  • Gawel, N., & Jarret, R. L. (1991). A modified CTAB DNA extraction procedure for Musa and Ipomoea plant. Molecular Biolology, 9, 262–266.

    CAS  Google Scholar 

  • Hubick, K. T., Farquhar, G. D., & Shorter, R. (1986). Correlation between water-use efficiency and carbon isotope discrimination in diverse peanut germplasm. Australian Journal of Plant Physiology, 13, 803–816.

    Article  CAS  Google Scholar 

  • Impa, S. M., Nadaradjan, S., Boominathan, P., Shashidhara, G., Bindumadhava, H., & Sheshshayee, M. S. (2005). Carbon isotope discrimination accurately reflects variability in WUE measured at a whole plant level in rice (Oryza sativa L.). Crop Science, 45, 2517–2522.

    Article  CAS  Google Scholar 

  • Kanagaraj, P., Prince, K. S. J., Sheeba, J. A., Biji, K. R., Paul, S. B., Senthil, A., et al. (2010). Microsatellite markers linked to drought resistance in rice (Oryza sativa L.). Current Science, 98(6), 836–839.

    CAS  Google Scholar 

  • Kumar, B., Gomez, S. M., Boopathi, N. M., Kumar, S. S., Kumaresan, D., Biji, K. R., et al. (2005). Identification of microsatellite markers associated with drought tolerance in rice (Oryza sativa L.) using bulked line analysis. In: Abstracts, seventeenth annual congress of PGIA, 24–25, November, 2005, Postgraduate Institute of Peradeniya, Sri Lanka (p. 6).

  • Ludlow, M. M., & Muchow, R. C. (1990). A critical evaluation of traits for improving crop yields in water-limited environments. Advances in Agronomy, 43, 107–153.

    Article  Google Scholar 

  • Madhava, B. H., Sheshshayee, M. S., Shankar, A. G., Prasad, T. G., & Udayakumar, M. (2003). Use of SPAD chlorophyll meter to assess transpiration efficiency of peanut. In: Cruickshank et al. (Eds.), Breeding of drought resistant peanuts. ACIAR Proceedings No. 112. Proceedings of a collaborative review meeting, Hyderabad, Andhra Pradesh, India (pp. 3–9). 25–27 February 2002. ACIAR, Canberra, Australia.

  • Matsui, T., & Singh, B. B. (2003). Root characteristics in cowpea related to drought tolerance at the seedling stage. Experimental Agriculture, 39, 29–38.

    Article  Google Scholar 

  • Passioura, J. B. (1983). Roots and drought resistance. Agricultural Water Management, 7, 265–280.

    Article  Google Scholar 

  • Passioura, J. B. (1986). Resistance to drought and salinity: Avenues for improvement. Australian Journal of Plant Physiolgy, 13, 191–201.

    Article  Google Scholar 

  • Price, A. H., Steele, K. A., Moore, B. J., & Jones, R. G. W. (2002). Upland rice grown in soil filled chambers and exposed to contrasting water-deficit regimes. II. Mapping QTLs for root morphology and distribution. Field Crop Research, 76, 25–43.

    Article  Google Scholar 

  • Rao, R. C. N., Udayakumar, M., Farquhar, G. D., Talwar, H. S., & Prasad, T. G. (1995). Variation in carbon isotope discrimination and its relationship to specific leaf area and ribulose-1,5-bisphosphate carboxylase content in groundnut genotypes. Australian Journal of Plant Physiology, 22, 545–551.

    Article  CAS  Google Scholar 

  • Rao, R. C. N., & Wright, G. C. (1994). Stability of the relationship between specific leaf area and carbon isotope discrimination across environments in peanut. Crop Science, 34, 98–103.

    Article  Google Scholar 

  • Robinson, D., Handley, L. L., Scrimgeour, C. M., Gordon, D. C., Forster, B. P., & Ellis, R. P. (2000). Using stable isotope natural abundances (δ15N and δ13C) to integrate the stress responses of wild barley (Hordeum spontaneum C. Koch.) genotypes. Journal of Experimental Botany, 51, 41–50.

    CAS  PubMed  Google Scholar 

  • Rucker, K. S., Kvien, C. K., Holbrook, C. C., & Hook, J. E. (1995). Identification of peanut genotypes with improved drought avoidance traits. Peanut Science, 22, 14–18.

    Article  Google Scholar 

  • Sellamuthu, R., Liu, G. F., Ranganathan, C. B., & Serraj, R. (2011). Genetic analysis and validation of quantitative trait loci associated with reproductive-growth traits and grain yield under drought stress in a doubled haploid line population of rice (Oryza sativa L.). Field Crops Reserach, 124, 46–58.

    Article  Google Scholar 

  • Sheshshayee, M. S., Bindumadhava, H., Rachaputi, N. R., Prasad, T. G., Udayakumar, M., Wright, G. C., et al. (2006). Leaf chlorophyll concentration relates to transpiration efficiency in peanut. Annals of Applied Biology, 148, 7–15.

    Article  CAS  Google Scholar 

  • Sheshshayee, M. S., Bindumadhava, H., Shankar, A. G., Prasad, T. G., & Udayakumar, M. (2003). Breeding strategies to exploit water use efficiency for crop improvement. Journal of Plant Biology, 30, 253–268.

    Google Scholar 

  • Songsri, P., Jogloy, S., Vorasoot, N., Akkasaeng, C., Patanothai, A., & Holbrook, C. C. (2008). Root distribution of drought resistant peanut genotypes in response to drought. Journal of Agronomy and Crop Science, 194, 92–103.

    Article  Google Scholar 

  • Srividhya, A., Vemireddy, L. R., Sridhar, S., Jayaprada, M., Ramanarao, P. V., Hariprasad, A., et al. (2011). Molecular mapping of QTLs for yield and its components under two water supply conditions in rice (Oryza sativa L.). Journal of Crop Science and Biotechnology, 14(1), 45–56.

    Article  Google Scholar 

  • Taiz, L., & Zeiger, E. (2006). Stress physiology. In L. Taiz & E. Zeiger (Eds.), Plant physiology (4th ed., pp. 671–681). Sunderland, MA: Sinauer Associates Inc.

    Google Scholar 

  • Udayakumar, M., Sheshshayee, M. S., Nataraj, K. N., Bindumadhava, H., Devendra, R., Aftab Hussain, I. S., et al. (1998). Why breeding for water use efficiency has not been successful. An analysis and alternate approach to exploit this trait for crop improvement. Current Science, 74, 996–1000.

    Google Scholar 

  • Wright, G. C., Hubick, K. T., & Farquhar, G. D. (1988). Discrimination in carbon isotopes of leaves correlates with water-use efficiency of field grown peanut cultivars. Australian Journal of Plant Physiology, 15, 815–825.

    Article  Google Scholar 

  • Wright, G. C., & Nageswara Rao, R. C. (1994). Peanut water relations. In J. Smartt (Ed.), The groundnut crop (pp. 281–325). London: Chapman & Hall.

    Chapter  Google Scholar 

  • Wright, G. C., Rao, R. C. N., & Farquhar, G. D. (1994). Water-use efficiency and carbon isotope discrimination in peanut under water deficit conditions. Crop Science, 34, 92–97.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from Kerala State Council for Science, Technology and Environment, Young Investigator’s Programme in Biotechnology is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Beena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beena, R., Praveenkumar, V.P., Vighneswaran, V. et al. Bulked line analysis: a useful tool to identify microsatellite markers linked to drought tolerance in rice. Ind J Plant Physiol. 23, 7–15 (2018). https://doi.org/10.1007/s40502-017-0321-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-017-0321-0

Keywords

Navigation