Indian Journal of Plant Physiology

, Volume 23, Issue 1, pp 140–147 | Cite as

Functional analysis of Triticum durum type 1 metallothionein gene (dMT) in response to varying levels of cadmium

  • Filiz Yesilirmak
  • Zahide Neslihan Ozturk Gökçe
  • Banu Metin
  • Zehra Sayers
Original Article


The effect of varying levels of cadmium and correlated changes on the expression level of a type 1 metallothionein gene (dMT) were investigated in Triticum durum cv. Balçalı-85. Increasing the cadmium concentration resulted in a decrease in the dry weights of roots and shoots, and the effect was stronger in roots. Roots also showed a higher capacity to accumulate cadmium. Southern blot analyses revealed that the dMT gene, delineated by two exons and a non-coding intron region, exists at a single locus in the T. durum genome. Changes in dMT gene expression during cadmium exposure were monitored by two approaches. Northern blot analyses showed that the transcript level in roots increased upon treatment with increasing cadmium, which was quantified by qRT-PCR as 4.5 fold of the base level at 10 μM Cd. These results show a positive correlation between cadmium exposure and expression of dMT gene in durum wheat, and will provide a basis for studies on the role of type 1 metallothioneins in cadmium response.


Cadmium Gene expression Metallothionein Triticum durum 



We are grateful to Dr Atilla Yazici, Veli Bayir for help with ICP measurement and Ozay Ozgur Gokmen for plant physiology experiments in Sabanci University (Istanbul/Turkey).


  1. Akashi, K., Nishimura, N., Ishida, Y., & Yokota, A. (2004). Potent hydroxyl radical-scavenging activity of drought-induced type-2 metallothionein in wild watermelon. Biochemical and Biophysical Research Communications, 323, 72–78.CrossRefPubMedGoogle Scholar
  2. Bilecen, K., Ozturk, U. H., Duru, A. D., Sutlu, T., Petoukhov, M. V., Svergun, D. I., et al. (2005). Triticum durum metallothionein. Isolation of the gene and structural characterization of the protein using solution scattering and molecular modeling. Journal of Biological Chemistry, 280, 13701–13711.CrossRefPubMedGoogle Scholar
  3. Binz, P. A., & Kagi, J. H. R. (1999). Metallothionein: Molecular evolution and classification. In C. Klaasen (Ed.), Metallothionein IV (pp. 7–13). Basel: Birkhäuser Verlag.CrossRefGoogle Scholar
  4. Brkljacić, J. M., Samardzić, J. T., Timotijević, G. S., & Maksimović, V. R. (2004). Expression analysis of buckwheat (Fagopyrum esculentum Moench) metallothionein-like gene (MT3) under different stress and physiological conditions. Journal of Plant Physiology, 161, 741–746.CrossRefPubMedGoogle Scholar
  5. Butt, A., Mousley, C., Morris, K., Beynon, J., Can, C., Holub, E., et al. (1998). Differential expression of a senescence-enhanced metallothionein gene in Arabidopsis in response to isolates of Peronospora parasitica and Pseudomonas syringae. The Plant Journal, 16, 209–221.CrossRefPubMedGoogle Scholar
  6. Cebeci, Ö., Köktürk, B., Ergen, N., Öztür, L., Çakmak, İ., & Budak, H. (2008). Differential expression of wheat transcriptomes in response to varying cadmium concentrations. Biologia Plantarum, 52, 703–708.CrossRefGoogle Scholar
  7. Chang, T., Liu, X., Xu, H., Meng, K., Chen, S., & Zhu, Z. (2004). A metallothionein-like gene htMT2 strongly expressed in internodes and nodes of Helianthus tuberosus and effects of metal ion treatment on its expression. Planta, 218, 449–455.CrossRefPubMedGoogle Scholar
  8. Charbonnel-Campaa, L., Lauga, B., & Combes, D. (2000). Isolation of a type 2 metallothionein-like gene preferentially expressed in the tapetum in Zea mays. Gene, 254, 199–208.CrossRefPubMedGoogle Scholar
  9. Chatthai, M., Kaukinen, K. H., Tranbarger, T. J., Gupta, P. K., & Misra, S. (1997). The isolation of a novel metallothionein-related cDNA expressed in somatic and zygotic embryos of Douglas-fir: Regulation by ABA, osmoticum, and metal ions. Plant Molecular Biology, 34, 243–254.CrossRefPubMedGoogle Scholar
  10. Chen, H. J., Hou, W. C., Yang, C. Y., Huang, D. J., Liu, J. S., & Lin, Y. H. (2003). Molecular cloning of two metallothionein-like protein genes with differential expression patterns from sweet potato (Ipomoea batatas) leaves. Journal of Plant Physiology, 160, 547–555.CrossRefPubMedGoogle Scholar
  11. Cho, S. H., Hoang, Q. T., Kim, Y. Y., Shin, H. Y., Ok, S. H., Bae, J. M., et al. (2006). Proteome analysis of gametophores identified a metallothionein involved in various abiotic stress responses in Physcomitrella patens. Plant Cell Reports, 25, 475–488.CrossRefPubMedGoogle Scholar
  12. Choi, D., Kim, H. M., Yun, H. K., Park, J. A., Kim, W. T., & Bok, S. H. (1996). Molecular cloning of a metallothionein-like gene from Nicotiana glutinosa L. and its induction by wounding and tobacco mosaic virus infection. Plant Physiology, 112, 353–359.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Clemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88, 1707–1719.CrossRefPubMedGoogle Scholar
  14. Cobbett, C., & Goldsbrough, P. (2002). Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology, 53, 159–182.CrossRefPubMedGoogle Scholar
  15. Davies, C., & Robinson, S. P. (2000). Differential screening indicates a dramatic change in mRNA profiles during grape berry ripening. Cloning and characterization of cDNAs encoding putative cell wall and stress response proteins. Plant Physiology, 122, 803–812.CrossRefPubMedPubMedCentralGoogle Scholar
  16. de Framond, A. J. (1991). A metallothionein-like gene from maize (Zea mays). Cloning and characterization. FEBS Letters, 290, 103–106.CrossRefPubMedGoogle Scholar
  17. Di Toppi, L. S., & Gabbrielli, R. (1999). Response to cadmium in higher plants. Environmental and Experimental Botany, 41, 105–130.CrossRefGoogle Scholar
  18. Evans, K. M., Gatehouse, J. A., Lindsay, W. P., Shi, J., Tommey, A. M., & Robinson, N. J. (1992). Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: Implications for PsMTA function. Plant Molecular Biology, 20, 1019–1028.CrossRefPubMedGoogle Scholar
  19. Freisinger, E. (2008). Plant MTs-long neglected members of the metallothionein superfamily. Dalton Transactions, 47, 6663–6675.CrossRefGoogle Scholar
  20. Grant, C. A., Buckley, W. T., Bailey, L. D., & Selles, F. (1998). Cadmium accumulation in crops. Canadian Journal of Plant Science, 78, 1–17.CrossRefGoogle Scholar
  21. Guo, W. J., Bundithya, W., & Goldsbrough, P. B. (2003). Characterization of the Arabidopsis metallothionein gene family: Tissue-specific expression and induction during senescence and in response to copper. New Phytologist, 159, 369–381.CrossRefGoogle Scholar
  22. Hsieh, H. M., Liu, W. K., Chang, A., & Huang, P. C. (1996). RNA expression patterns of a type 2 metallothionein-like gene from rice. Plant Molecular Biology, 32, 525–529.CrossRefPubMedGoogle Scholar
  23. Hsieh, H. M., Liu, W. K., & Huang, P. C. (1995). A novel stress-inducible metallothionein-like gene from rice. Plant Molecular Biology, 28, 381–389.CrossRefPubMedGoogle Scholar
  24. Hudspeth, R. L., Hobbs, S. L., Anderson, D. M., Rajasekaran, K., & Grula, J. W. (1996). Characterization and expression of metallothionein-like genes in cotton. Plant Molecular Biology, 31, 701–705.CrossRefPubMedGoogle Scholar
  25. Jin, S., Cheng, Y., Guan, Q., Liu, D., Takano, T., & Liu, S. (2006). A metallothionein-like protein of rice (rgMT) functions in E. coli and its gene expression is induced by abiotic stresses. Biotechnology Letters, 28, 1749–1753.CrossRefPubMedGoogle Scholar
  26. Kim, S. H., Jeong, J. C., Ahn, Y. O., Lee, H. S., & Kwak, S. S. (2014). Differential responses of three sweetpotato metallothionein genes to abiotic stress and heavy metals. Molecular Biology Reports, 41, 6957–6966.CrossRefPubMedGoogle Scholar
  27. Kısa, D., Öztürk, L., & Tekin, S. (2016). Gene expression analysis of metallothionein and mineral elements uptake in tomato (Solanum lycopersicum) exposed to cadmium. Journal of Plant Research, 129, 989–995.CrossRefPubMedGoogle Scholar
  28. Klaassen, C. D., Liu, J., & Choudhuri, S. (1999). Metallothionein: An intracellular protein to protect against cadmium toxicity. Annual Review of Pharmacology and Toxicology, 39, 267–294.CrossRefPubMedGoogle Scholar
  29. Kokturk, B. (2006). Cadmium uptake and antioxidative enzyme in durum wheat cultivars in response to increasing Cd application. Resource document.
  30. Lee, J., Shim, D., Song, W. Y., Hwang, I., & Lee, Y. (2004). Arabidopsis metallothioneins 2a and 3 enhance resistance to cadmium when expressed in Vicia faba guard cells. Plant Molecular Biology, 54, 805–815.CrossRefPubMedGoogle Scholar
  31. Leszczyszyn, O. I., Imam, H. T., & Blindauer, C. A. (2013). Diversity and distribution of plant metallothioneins: A review of structure, properties and functions. Metallomics, 5, 1146–1169.CrossRefPubMedGoogle Scholar
  32. Muller, P. Y., Janovjak, H., Miserez, A. R., & Dobbie, Z. (2002). Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques, 32, 1372–1374, 1376, 1378–1379.Google Scholar
  33. Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8, 4321–4325.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Navabpour, S., Morris, K., Allen, R., Harrison, E., A-H-Mackerness, S., & Buchanan-Wollaston, V. (2003). Expression of senescence-enhanced genes in response to oxidative stress. Journal of Experimental Botany, 54, 2285–2292.CrossRefPubMedGoogle Scholar
  35. Nezhad, R. M., Shahpiri, A., & Mirlohi, A. (2013). Heterologous expression and metal-binding characterization of a type 1 metallothionein isoform (OsMTI-1b) from rice (Oryza sativa). Protein Journal, 32, 131–137.CrossRefPubMedGoogle Scholar
  36. Nishiuchi, S., Liu, S., & Takano, T. (2007). Isolation and characterization of a metallothionein-1 protein in Chloris virgata Swartz that enhances stress tolerances to oxidative, salinity and carbonate stress in Saccharomyces cerevisiae. Biotechnology Letters, 29, 1301–1305.CrossRefPubMedGoogle Scholar
  37. Ozturk, L., Eker, S., Ozkutlu, F., & Cakmak, I. (2003). Effect of cadmium on growth and concentration of cadmium, ascorbic acid and sulphydryl groups in durum wheat cultivars. Turkish Journal of Agriculture and Forestry, 27, 161–168.Google Scholar
  38. Palmiter, R. D. (1998). The elusive function of metallothioneins. Proceedings of the National Academy of Sciences of the United States of America, 95, 8428–8430.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Paradiso, A., Berardino, R., de Pinto, M. C., Sanità di Toppi, L., Storelli, M. M., Tommasi, F., et al. (2008). Increase in ascorbate-glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant and Cell Physiology, 49, 362–374.CrossRefPubMedGoogle Scholar
  40. Polle, A., & Schützendübel, S. (2003). Heavy metal signalling in plants: Linking cellular and organismic responses. In H. Hirt & K. Shinozaki (Eds.), Plant responses to abiotic stress (Vol. 4, pp. 187–215). Berlin: Springer.CrossRefGoogle Scholar
  41. Quan, X. Q., Wang, Z. L., Zhang, H., & Bi, Y. P. (2008). Cloning and characterization of TsMT3, a type 3 metallothionein gene from salt cress (Thellungiella salsuginea). DNA Sequence, 19, 340–346.CrossRefPubMedGoogle Scholar
  42. Rai, V., Khatoon, S., Bisht, S. S., & Mehrotra, S. (2005). Effect of cadmium on growth, ultramorphology of leaf and secondary metabolites of Phyllanthus amarus Schum. and Thonn. Chemosphere, 61, 1644–1650.CrossRefPubMedGoogle Scholar
  43. Rauser, W. E. (1999). Structure and function of metal chelators produced by plants: The case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochemistry and Biophysics, 31, 19–48.CrossRefPubMedGoogle Scholar
  44. Reynolds, T. L., & Crawford, R. L. (1996). Changes in abundance of an abscisic acid-responsive, early cysteine-labeled metallothionein transcript during pollen embryogenesis in bread wheat (Triticum aestivum). Plant Molecular Biology, 32, 823–829.CrossRefPubMedGoogle Scholar
  45. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  46. Snowden, K. C., Richards, K. D., & Gardner, R. C. (1995). Aluminum-induced genes (induction by toxic metals, low calcium, and wounding and pattern of expression in root tips). Plant Physiology, 107, 341–348.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Vašák, M., & Kägi, J. H. R. (1994). Metallothioneins. In R. B. King (Ed.), Encyclopedia of inorganic chemistry (pp. 2229–2241). New York: Wiley.Google Scholar
  48. Wong, H. L., Sakamoto, T., Kawasaki, T., Umemura, K., & Shimamoto, K. (2004). Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiology, 135, 1447–1456.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Xue, T., Li, X., Zhu, W., Wu, C., Yang, G., & Zheng, C. (2009). Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. Journal of Experimental Botany, 60, 339–349.CrossRefPubMedGoogle Scholar
  50. Yang, Z., Wu, Y., Li, Y., Ling, H. Q., & Chu, C. (2009). OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Molecular Biology, 70, 219–229.CrossRefPubMedGoogle Scholar
  51. Yang, M., Zhang, F., Wang, F., Dong, Z., Cao, Q., & Chen, M. (2015). Characterization of a type 1 metallothionein gene from the stresses-tolerant plant Ziziphus jujuba. International Journal of Molecular Sciences, 16(8), 16750–16762.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Yourtchi, M. S., & Bayat, H. R. (2013). Effect of cadmium toxicity on growth, cadmium accumulation and macronutrient content of durum wheat (Dena CV.). International Journal of Agriculture and Crop Sciences, 6, 1099–1103.Google Scholar
  53. Yu, L. H., Umeda, M., Liu, J. Y., Zhao, N. M., & Uchimiya, H. (1998). A novel MT gene of rice plants is strongly expressed in the node portion of the stem. Gene, 206, 29–35.CrossRefPubMedGoogle Scholar
  54. Yuan, J., Chen, D., Ren, Y., Zhang, X., & Zhao, J. (2008). Characteristic and expression analysis of a metallothionein gene, OsMT2b, down-regulated by cytokinin suggests functions in root development and seed embryo germination of rice. Plant Physiology, 146, 1637–1650.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Zhou, J., & Goldsbrough, P. B. (1994). Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell, 6, 875–884.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Zhou, J., & Goldsbrough, P. B. (1995). Structure, organization and expression of the metallothionein gene family in Arabidopsis. Molecular and General Genetics, 248, 318–328.CrossRefPubMedGoogle Scholar
  57. Zhou, G. K., Xu, Y. F., & Liu, J. Y. (2005). Characterization of a rice class II metallothionein gene: Tissue expression patterns and induction in response to abiotic factors. Journal of Plant Physiology, 162, 686–696.CrossRefPubMedGoogle Scholar
  58. Zimeri, A. M., Dhankher, O. P., McCaig, B., & Meagher, R. B. (2005). The plant MT1 metallothioneins are stabilized by binding cadmiums and are required for cadmium tolerance and accumulation. Plant Molecular Biology, 58, 839–855.CrossRefPubMedGoogle Scholar

Copyright information

© Indian Society for Plant Physiology 2017

Authors and Affiliations

  1. 1.Faculty of Engineering and Natural SciencesSabanci UniversityOrhanli, TuzlaTurkey
  2. 2.Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and TechnologiesNigde Omer Halisdemir UniversityNigdeTurkey
  3. 3.Department of Food EngineeringIstanbul Sabahattin Zaim UniversityKucukcekmeceTurkey

Personalised recommendations