Skip to main content

Advertisement

Log in

Nutrition as Adjunct Therapy in Periodontal Disease Management

  • Oral Disease and Nutrition (F Nishimura, Section Editor)
  • Published:
Current Oral Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Periodontal disease and its associated systemic diseases have gained public attention due to their increasing global prevalence. Still, the gold standard for the management of periodontitis is scaling and root planing (SRP). However, bacterial recolonization is considered a limitation of this approach. Further, the efficacy of adjunctive agents such as antibiotics, antimicrobials, and probiotics has been investigated extensively. Nowadays, drug resistance development due to antibiotics and antimicrobials abuse has become a global problem and our concern. In order to reduce the spread of drug resistance development, many investigations have been focused on the use of nutritional compounds rather than synthetic drugs for treating periodontitis, a relatively low-grade inflammatory disease. Moreover, if periodontitis is understood as a bacterial dysbiosis-induced inflammatory disease, then its treatment could be designed not only to eliminate periodontopathogens, but also to modify the host immune response. Therefore, this review will highlight the effectiveness of some pertinent nutrients towards periodontal condition.

Recent Findings

Nutrients are known to possess anti-inflammatory, antioxidant, and antimicrobial properties that maintain homeostasis. In vivo and in vitro studies have demonstrated the positive effects of nutrient intake on the maintenance and restoration of periodontal health. Vitamins, fatty acids, and probiotics are increasingly being found to have remarkable benefits and valuable properties.

Summary

Further, considering the oral-systemic connection, nutritional supplementation is encouraged as a possible adjunct therapy for the improvement of both oral and systemic health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rinuchitra D, Govindarajan J, Thangavelu S, Jayaraman A. Kikuchi-Fujimoto’s disease and scrub typhus: a rare association. Brunei Int Med J. 2012;8(5):271–4. https://doi.org/10.1080/20002297.2017.1340085.

    Article  CAS  Google Scholar 

  2. Lamont RJ, Hajishengallis G. Polymicrobial synergy and dysbiosis in inflammatory disease. Trens Mol Med. 2015;21:172–83. https://doi.org/10.1016/j.molmed.2014.11.004.

    Article  CAS  Google Scholar 

  3. Hajishengallis G, Lamont RJ. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol. 2012;27(6):409–19. https://doi.org/10.1111/j.2041-1014.2012.00663.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Socransky SS, Haffajee AD. The bacterial etiology of destructive periodontal disease: current concepts. J Periodontol. 1992;63(4s):322–31. https://doi.org/10.1902/jop.1992.63.4s.322.

    Article  CAS  PubMed  Google Scholar 

  5. Van Dyke TE. The management of inflammation in periodontal disease. J Periodontol. 2008;79(8s):1601–8. https://doi.org/10.1902/jop.2008.080173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kornman KS, Newman MG, Alvarado R, Flemmig TF, Nachnani S, Tumbusch J. Clinical and microbiological patterns of adults with periodontitis. J Periodontol. 1991;62(10):634–42. https://doi.org/10.1902/jop.1991.62.10.634.

    Article  CAS  PubMed  Google Scholar 

  7. Van Dyke TE. Inflammation and periodontal diseases: a reappraisal. J Periodontol. 2008;79(8s):1501–2. https://doi.org/10.1902/jop.2008.080279.

    Article  PubMed  Google Scholar 

  8. Kinane DF, Preshaw PM, Loos BG. Host-response: understanding the cellular and molecular mechanisms of host-microbial interactions - consensus of the seventh European workshop on periodontology. J Clin Periodontol. 2011;38:44–8. https://doi.org/10.1111/j.1600-051X.2010.01682.x.

    Article  PubMed  Google Scholar 

  9. Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 2010;8:481–90. https://doi.org/10.1038/nrmicro2337.

    Article  CAS  PubMed  Google Scholar 

  10. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43(11):5721–32. https://doi.org/10.1128/JCM.43.11.5721-5732.2005.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Armingohar Z, Jørgensen JJ, Kristoffersen AK, Abesha-Belay E, Olsen I. Bacteria and bacterial DNA in atherosclerotic plaque and aneurysmal wall biopsies from patients with and without periodontitis. J Oral Microbiol. 2014;6(1). Doi: https://doi.org/10.3402/jom.v6.23408.

    Article  Google Scholar 

  12. Yamazaki K. The human microbiota and chronic disease. In: Luigi Nibali, Henderson B, editors. The human microbiota and chronic disease: dysbiosis as a cause of human pathology. Hoboken, NJ, USA: John Wiley & Sons, Inc; 2016. Doi:https://doi.org/10.1002/9781118982907.

    Google Scholar 

  13. Berezow AB, Darveau RP. Microbial shift and periodontitis. Periodontol. 2011;55(1):36–47. https://doi.org/10.1111/j.1600-0757.2010.00350.x.

    Article  Google Scholar 

  14. Mombelli A. Microbial colonization of the periodontal pocket and its significance for periodontal therapy. Periodontol. 2018;76:85–96. https://doi.org/10.1111/prd.12147.

    Article  Google Scholar 

  15. Soares GMS, Mendes JAV, Silva MP, Faveri M, Teles R, Socransky SS, et al. Metronidazole alone or with amoxicillin as adjuncts to non-surgical treatment of chronic periodontitis: a secondary analysis of microbiological results from a randomized clinical trial. J Clin Periodontol. 2014;41(4):366–76. https://doi.org/10.1111/jcpe.12004.

    Article  CAS  PubMed  Google Scholar 

  16. Petelin M, Perkič K, Seme K, Gašpirc B. Effect of repeated adjunctive antimicrobial photodynamic therapy on subgingival periodontal pathogens in the treatment of chronic periodontitis. Lasers Med Sci. 2015;30(6):1647–56. https://doi.org/10.1007/s10103-014-1632-2.

    Article  PubMed  Google Scholar 

  17. Teughels W, Durukan A, Ozcelik O, Pauwels M, Quirynen M, Haytac MC. Clinical and microbiological effects of Lactobacillus reuteri probiotics in the treatment of chronic periodontitis: a randomized placebo-controlled study. J Clin Periodontol. 2013;40(11):1025–35. https://doi.org/10.1111/jcpe.12155.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rydén L, Buhlin K, Ekstrand E, De Faire U, Gustafsson A, Holmer J, et al. Periodontitis increases the risk of a first myocardial infarction: a report from the PAROKRANK study. Circulation. 2016;133(6):576–83. https://doi.org/10.1161/CIRCULATIONAHA.115.020324.

    Article  CAS  PubMed  Google Scholar 

  19. Artese HPC, Foz AM, Rabelo MDS, Gomes GH, Orlandi M, Suvan J, et al. Periodontal therapy and systemic inflammation in type 2 diabetes mellitus: a meta-analysis. PLoS One. 2015;10(5):e0128344. https://doi.org/10.1371/journal.pone.0128344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Michaud DS, Kelsey KT, Papathanasiou E, Genco CA, Giovannucci E. Periodontal disease and risk of all cancers among male never smokers: an updated analysis of the health professionals follow-up study. Ann Oncol. 2016;27(5):941–7. https://doi.org/10.1093/annonc/mdw028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Massaro M, Scoditti E, Carluccio MA, De Caterina R. Nutraceuticals and prevention of atherosclerosis: focus on ω-3 polyunsaturated fatty acids and mediterranean diet polyphenols. Cardiovasc Ther. 2010;28(4):e13–9. https://doi.org/10.1111/j.1755-5922.2010.00211.x.

    Article  CAS  PubMed  Google Scholar 

  22. Ansari S, Chauhan B, Kalam N, Kumar G. Current concepts and prospects of herbal nutraceutical: a review. J Adv Pharm Technol Res. 2013;4(1):4–8. https://doi.org/10.4103/2231-4040.107494.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Varela-López A, Bullón P, Giampieri F, Quiles J. Non-nutrient, naturally occurring phenolic compounds with antioxidant activity for the prevention and treatment of periodontal diseases. Antioxidants. 2015;4(3):447–81. https://doi.org/10.3390/antiox4030447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Padh H. Vitamin C. Newer insights into its biochemical functions. Nutr Rev. 1991;49(3):65–70. https://doi.org/10.1111/j.1753-4887.1991.tb07407.x.

    Article  Google Scholar 

  25. Bergendi L, Beneš L, Ďuracková Z, Ferenčik M. Chemistry, physiology and pathology of free radicals. Life Sci. 1999;65:1865–74. https://doi.org/10.1016/S0024-3205(99)00439-7.

    Article  CAS  PubMed  Google Scholar 

  26. Chapple ILC, Milward MR, Dietrich T. The prevalence of inflammatory periodontitis is negatively associated with serum antioxidant concentrations. J Nutr. 2007;137(3):657–64. https://doi.org/10.1093/jn/137.3.657.

    Article  CAS  PubMed  Google Scholar 

  27. Van Der Velden U, Kuzmanova D, Chapple ILC. Micronutritional approaches to periodontal therapy. In: J Clin Periodontol. 2011;38:142–58. https://doi.org/10.1111/j.1600-051X.2010.01663.x.

    Article  Google Scholar 

  28. Peterlik M, Cross HS. Vitamin D and calcium insufficiency-related chronic diseases: molecular and cellular pathophysiology. Eur J Clin Nutr. 2009;63:1377–86. https://doi.org/10.1038/ejcn.2009.105.

    Article  CAS  PubMed  Google Scholar 

  29. Peterlik M. Vitamin D insufficiency and chronic diseases: hype and reality. Food Funct. 2012;3(8):784–94. https://doi.org/10.1039/c2fo10262e.

    Article  CAS  PubMed  Google Scholar 

  30. Akman S, Canakci V, Kara A, Tozoglu U, Arabaci T, Dagsuyu İM. Therapeutic effects of alpha lipoic acid and vitamin C on alveolar bone resorption after experimental periodontitis in rats: a biochemical, histochemical, and stereologic study. J Periodontol. 2013;84(5):666–74. https://doi.org/10.1902/jop.2012.120252.

    Article  CAS  PubMed  Google Scholar 

  31. Tomofuji T, Ekuni D, Sanbe T, Irie K, Azuma T, Maruyama T, et al. Effects of vitamin C intake on gingival oxidative stress in rat periodontitis. Free Radic Biol Med. 2009;46(2):163–8. https://doi.org/10.1016/j.freeradbiomed.2008.09.040.

    Article  CAS  PubMed  Google Scholar 

  32. Kuzmanova D, Jansen IDC, Schoenmaker T, Nazmi K, Teeuw WJ, Bizzarro S, et al. Vitamin C in plasma and leucocytes in relation to periodontitis. J Clin Periodontol. 2012;39(10):905–12. https://doi.org/10.1111/j.1600-051X.2012.01927.x.

    Article  CAS  PubMed  Google Scholar 

  33. Nishida M, Grossi SG, Dunford RG, Ho AW, Trevisan M, Genco RJ. Dietary vitamin C and the risk for periodontal disease. J Periodontol. 2000;71(8):1215–23. https://doi.org/10.1902/jop.2000.71.8.1215.

    Article  CAS  PubMed  Google Scholar 

  34. •• Varela-López A, Navarro-Hortal MD, Giampieri F, Bullón P, Battino M, Quiles JL. Nutraceuticals in periodontal health: a systematic review on the role of vitamins in periodontal health maintenance. Molecules. 2018;23(5):1226. https://doi.org/10.3390/molecules23051226 This manuscript demonstrates clear data on the impact of vitamins in maintaining periodontal health.

    Article  CAS  PubMed Central  Google Scholar 

  35. Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol. 2014;21(3):319–29. https://doi.org/10.1016/j.chembiol.2013.12.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fukumoto S. FGF23: phosphate metabolism and beyond. IBMS Bonekey. 2010;7(8):268–78. https://doi.org/10.1138/20100458.

    Article  Google Scholar 

  37. Abreu OJ, Tatakis DN, Elias-Boneta AR, López Del Valle L, Hernandez R, Pousa MS, et al. Low vitamin D status strongly associated with periodontitis in Puerto Rican adults. BMC Oral Health. 2016;16(1):89. https://doi.org/10.1186/s12903-016-0288-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Boggess KA, Espinola JA, Moss K, Beck J, Offenbacher S, Camargo CA Jr. Vitamin D status and periodontal disease among pregnant women. J Periodontol. 2011;82(2):195–200. https://doi.org/10.1902/jop.2010.100384.

    Article  CAS  PubMed  Google Scholar 

  39. Page RC, Eke PI. Case definitions for use in population-based surveillance of periodontitis. J Periodontol. 2007;78(7s):1387–99. https://doi.org/10.1902/jop.2007.060264.

    Article  PubMed  Google Scholar 

  40. Millen AE, Hovey KM, LaMonte MJ, Swanson M, Andrews CA, Kluczynski MA, et al. Plasma 25-hydroxyvitamin D concentrations and periodontal disease in postmenopausal women. J Periodontol. 2013;84(9):1243–56. https://doi.org/10.1902/jop.2012.120445.

    Article  CAS  PubMed  Google Scholar 

  41. • Varela-López A, Battino M, Bullón P, Quiles JL. Dietary antioxidants for chronic periodontitis prevention and its treatment. A review on current evidences from animal and human studies. Ars Pharm. 2015;56(3):131–40. https://doi.org/10.3390/antiox4030447 This manuscript represents clear data on how antioxidants affect in chronic periodontitis.

    Article  CAS  Google Scholar 

  42. Wong RSY, Radhakrishnan AK. Tocotrienol research: past into present. Nutr Rev. 2012;70(9):483–90. https://doi.org/10.1111/j.1753-4887.2012.00512.x.

    Article  PubMed  Google Scholar 

  43. Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more. Free Radical Bio Med. 2007;43:4–15. https://doi.org/10.1016/j.freeradbiomed.2007.03.024.

    Article  CAS  Google Scholar 

  44. Carvalho RDS, De Souza CM, Neves JCDS, Holanda-Pinto SA, Pinto LMS, Brito GAC, et al. Vitamin e does not prevent bone loss and induced anxiety in rats with ligature-induced periodontitis. Arch Oral Biol. 2013;58(1):50–8. https://doi.org/10.1016/j.archoralbio.2012.04.020.

    Article  CAS  Google Scholar 

  45. Iwasaki M, Moynihan P, Manz MC, Taylor GW, Yoshihara A, Muramatsu K, et al. Dietary antioxidants and periodontal disease in community-based older Japanese: a 2-year follow-up study. Public Health Nutr. 2013;16(2):330–8. https://doi.org/10.1017/S1368980012002637.

    Article  PubMed  Google Scholar 

  46. Sun M, Dong J, Xia Y, Shu R. Antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm growing Streptococcus mutans. Microb Pathog. 2017;107:212–8. https://doi.org/10.1016/j.micpath.2017.03.040.

    Article  CAS  PubMed  Google Scholar 

  47. Desbois AP, Smith VJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol. 2010;85:1629–42. https://doi.org/10.1007/s00253-009-2355-3.

    Article  CAS  PubMed  Google Scholar 

  48. Correia M, Michel V, Matos AA, Carvalho P, Oliveira MJ, Ferreira RM, et al. Docosahexaenoic acid inhibits Helicobacter pylori growth in vitro and mice gastric mucosa colonization. PLoS One. 2012;7(4):e35072. https://doi.org/10.1371/journal.pone.0035072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Miao L, Liu Y, Li Q, Wang Z, Li H, Zhang G. Screening and sequence analysis of the hemolysin gene of Fusobacterium necrophorum. Anaerobe. 2010;16(4):402–4. https://doi.org/10.1016/j.anaerobe.2010.04.005.

    Article  CAS  PubMed  Google Scholar 

  50. Yates CM, Calder PC, Ed Rainger G. Pharmacology and therapeutics of omega-3 polyunsaturated fatty acids in chronic inflammatory disease. Pharmacol Ther. 2014;141(3):272–82. https://doi.org/10.1016/j.pharmthera.2013.10.010.

    Article  CAS  PubMed  Google Scholar 

  51. Huang CB, Ebersole JL. A novel bioactivity of omega-3 polyunsaturated fatty acids and their ester derivatives. Mol Oral Microbiol. 2010;25(1):75–80. https://doi.org/10.1111/j.2041-1014.2009.00553.x.

    Article  PubMed  Google Scholar 

  52. Calder PC. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br J Clin Pharmacol. 2013;75(3):645–62. https://doi.org/10.1111/j.1365-2125.2012.04374.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dawson DR, Branch-Mays G, Gonzalez OA, Ebersole JL. Dietary modulation of the inflammatory cascade. Periodontol. 2014;64(1):161–97. https://doi.org/10.1111/j.1600-0757.2012.00458.x.

    Article  Google Scholar 

  54. Campan P. Pilot study on n-3 polyunsaturated fatty acids in the treatment of human experimental gingivitis. J Clin Periodontol. 1997;24(12):907–13. https://doi.org/10.1111/j.1600-051X.1997.tb01210.x.

    Article  CAS  PubMed  Google Scholar 

  55. Deore GD, Gurav AN, Patil R, Shete AR, Naiktari RS, Inamdar SP. Herbal anti-inflammatory immunomodulators as host modulators in chronic periodontitis patients: a randomised, double-blind, placebo-controlled, clinical trial. J Periodontal Implant Sci. 2014;44(2):71–8. https://doi.org/10.5051/jpis.2014.44.2.71.

    Article  PubMed  PubMed Central  Google Scholar 

  56. El-Sharkawy H, Aboelsaad N, Eliwa M, Darweesh M, Alshahat M, Kantarci A, et al. Adjunctive treatment of chronic periodontitis with daily dietary supplementation with omega-3 fatty acids and low-dose aspirin. J Periodontol. 2010;81(11):1635–43. https://doi.org/10.1902/jop.2010.090628.

    Article  CAS  PubMed  Google Scholar 

  57. Naqvi AZ, Hasturk H, Mu L, Phillips RS, Davis RB, Halem S, et al. Docosahexaenoic acid and periodontitis in adults: a randomized controlled trial. J Dent Res. 2014;93(8):767–73. https://doi.org/10.1177/0022034514541125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Elkhouli AM. The efficacy of host response modulation therapy (omega-3 plus low-dose aspirin) as an adjunctive treatment of chronic periodontitis (clinical and biochemical study). J Periodontal Res. 2011;46(2):261–8. https://doi.org/10.1111/j.1600-0765.2010.01336.x.

    Article  CAS  PubMed  Google Scholar 

  59. • Keskiner I, Saygun I, Bal V, Serdar M, Kantarci A. Dietary supplementation with low-dose omega-3 fatty acids reduces salivary tumor necrosis factor-α levels in patients with chronic periodontitis: a randomized controlled clinical study. J Periodontal Res. 2017;52(4):695–703. https://doi.org/10.1111/jre.12434 This manuscript represents clinical randomized trial study of omega-3 supplementation in chronic periodontitis without aspirin.

    Article  CAS  PubMed  Google Scholar 

  60. Dyerberg J, Bang HO. Hæmostatic function and platelet polyunsaturated fatty acids in eskimos. Lancet. 1979;314(8140):433–5. https://doi.org/10.1016/S0140-6736(79)91490-9.

    Article  Google Scholar 

  61. Guyton JR, Bays HE. Safety considerations with niacin therapy. Am J Cardiol. 2007;99(6A):22C–31C. https://doi.org/10.1016/j.amjcard.2006.11.018.

    Article  CAS  PubMed  Google Scholar 

  62. Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation. 2002;106(21):2747–57. https://doi.org/10.1161/01.cir.0000038493.65177.94.

    Article  PubMed  Google Scholar 

  63. Furumoto H, Nanthirudjanar T, Kume T, Izumi Y, Park SB, Kitamura N, et al. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress. Toxicol Appl Pharmacol. 2016;296:1–9. https://doi.org/10.1016/j.taap.2016.02.012.

    Article  CAS  PubMed  Google Scholar 

  64. Yamada M, Takahashi N, Matsuda Y, Sato K, Yokoji M, Sulijaya B, et al. A bacterial metabolite ameliorates periodontal pathogen-induced gingival epithelial barrier disruption via GPR40 signaling. Sci Rep. 2018;8(1):9008. https://doi.org/10.1038/s41598-018-27408-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim M, Furuzono T, Yamakuni K, Li Y, Kim Y Il, Takahashi H, et al. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, enhances energy metabolism by activation of TRPV1. FASEB J. 2017;31(11):5036–48. https://doi.org/10.1096/fj.201700151R.

    Article  CAS  PubMed  Google Scholar 

  66. Sulijaya B, Takahashi N, Yamada M, Yokoji M, Sato K, Aoki-Nonaka Y, et al. The anti-inflammatory effect of 10-oxo-trans-11-octadecenoic acid (KetoC) on RAW 264.7 cells stimulated with Porphyromonas gingivalis lipopolysaccharide. J Periodontal Res. 2018;53(5):777–84. https://doi.org/10.1111/jre.12564.

    Article  CAS  PubMed  Google Scholar 

  67. Yang HE, Li Y, Nishimura A, Jheng HF, Yuliana A, Kitano-Ohue R, et al. Synthesized enone fatty acids resembling metabolites from gut microbiota suppress macrophage-mediated inflammation in adipocytes. Mol Nutr Food Res. 2017;61(10):1–13. https://doi.org/10.1002/mnfr.201700064.

    Article  CAS  Google Scholar 

  68. Da Silva Pinto M. Tea: a new perspective on health benefits. Food Res Int. 2013;53:558–67. https://doi.org/10.1016/j.jamcollsurg.2006.01.018.

    Article  Google Scholar 

  69. Kim JK. An update on the potential health benefits of carotenes. EXCLI J. 2015;15(1):1–4. https://doi.org/10.17179/excli2015-664.

    Article  Google Scholar 

  70. Higdon JV, Frei B. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr. 2003;43:89–143. https://doi.org/10.1080/10408690390826464.

    Article  CAS  PubMed  Google Scholar 

  71. Tipoe G, Leung T-M, Hung M-W, Fung M-L. Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovascular protection. Cardiovasc Hematol Disord Targets. 2007;7(2):135–44. https://doi.org/10.2174/187152907780830905.

    Article  CAS  Google Scholar 

  72. Reygaert WC. The antimicrobial possibilities of green tea. Front Microbiol. 2014;5:434. https://doi.org/10.3389/fmicb.2014.00434.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Cai Y, Chen Z, Liu H, Xuan Y, Wang X, Luan Q. Green tea epigallocatechin-3-gallate alleviates Porphyromonas gingivalis-induced periodontitis in mice. Int Immunopharmacol. 2015;29(2):839–45. https://doi.org/10.1016/j.intimp.2015.08.033.

    Article  CAS  PubMed  Google Scholar 

  74. Fournier-Larente J, Morin MP, Grenier D. Green tea catechins potentiate the effect of antibiotics and modulate adherence and gene expression in Porphyromonas gingivalis. Arch Oral Biol. 2016;65:35–43. https://doi.org/10.1016/j.archoralbio.2016.01.014.

    Article  CAS  PubMed  Google Scholar 

  75. Tsutsumi R, Yoshida T, Nii Y, Okahisa N, Iwata S, Tsukayama M, et al. Sudachitin, a polymethoxylated flavone, improves glucose and lipid metabolism by increasing mitochondrial biogenesis in skeletal muscle. Nutr Metab. 2014;11(1):32. https://doi.org/10.1186/1743-7075-11-32.

    Article  CAS  Google Scholar 

  76. Gutiérrez-Venegas G, Torras-Ceballos A, Gómez-Mora JA, Fernández-Rojas B. Luteolin, quercetin, genistein and quercetagetin inhibit the effects of lipopolysaccharide obtained from Porphyromonas gingivalis in H9c2 cardiomyoblasts. Cell Mol Biol Lett. 2017;22(1). Doi: https://doi.org/10.1186/s11658-017-0047-z.

  77. Bhattarai G, Poudel SB, Kook SH, Lee JC. Anti-inflammatory, anti-osteoclastic, and antioxidant activities of genistein protect against alveolar bone loss and periodontal tissue degradation in a mouse model of periodontitis. J Biomed Mater Res - Part A. 2017;105(9):2510–21. https://doi.org/10.1002/jbm.a.36109.

    Article  CAS  Google Scholar 

  78. Ohyama Y, Ito J, Kitano VJ, Shimada J, Hakeda Y. The polymethoxy flavonoid sudachitin suppresses inflammatory bone destruction by directly inhibiting osteoclastogenesis due to reduced ROS production and MAPK activation in osteoclast precursors. PLoS One. 2018;13(1):e0191192. https://doi.org/10.1371/journal.pone.0191192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Choi EY, Bae SH, Ha MH, Choe SH, Hyeon JY, Choi J Il, et al. Genistein suppresses Prevotella intermedia lipopolysaccharide-induced inflammatory response in macrophages and attenuates alveolar bone loss in ligature-induced periodontitis. Arch Oral Biol. 2016;62:70–9. https://doi.org/10.1016/j.archoralbio.2015.11.019.

    Article  CAS  PubMed  Google Scholar 

  80. McCarty MF, DiNicolantonio JJ, O’Keefe JH. Capsaicin may have important potential for promoting vascular and metabolic health. Open Hear. 2015;2(1):e000262. https://doi.org/10.1136/openhrt-2015-000262.

    Article  Google Scholar 

  81. Zhou Y, Guan X, Zhu W, Liu Z, Wang X, Yu H, et al. Capsaicin inhibits Porphyromonas gingivalis growth, biofilm formation, gingivomucosal inflammatory cytokine secretion, and in vitro osteoclastogenesis. Eur J Clin Microbiol Infect Dis. 2014;33(2):211–9. https://doi.org/10.1007/s10096-013-1947-0.

    Article  CAS  PubMed  Google Scholar 

  82. Takahashi N, Matsuda Y, Sato K, De Jong PR, Bertin S, Tabeta K, et al. Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP. Sci Rep. 2016;6:29294. https://doi.org/10.1038/srep29294.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Chang WL, Cheng FC, Wang SP, Chou ST, Shih Y. Cinnamomum cassia essential oil and its major constituent cinnamaldehyde induced cell cycle arrest and apoptosis in human oral squamous cell carcinoma HSC-3 cells. Environ Toxicol. 2017;32(2):456–68. https://doi.org/10.1002/tox.22250.

    Article  CAS  PubMed  Google Scholar 

  84. Mendes SJF, Sousa FIAB, Pereira DMS, Ferro TAF, Pereira ICP, Silva BLR, et al. Cinnamaldehyde modulates LPS-induced systemic inflammatory response syndrome through TRPA1-dependent and independent mechanisms. Int Immunopharmacol. 2016;34:60–70. https://doi.org/10.1016/j.intimp.2016.02.012.

    Article  CAS  PubMed  Google Scholar 

  85. Yang XQ, Zheng H, Ye Q, Li RY, Chen Y. Essential oil of cinnamon exerts anti-cancer activity against head and neck squamous cell carcinoma via attenuating epidermal growth factor receptor - tyrosine kinase. J BUON. 2015;20(6):1518–25.

    PubMed  Google Scholar 

  86. Wang Y, Zhang Y, Shi Y q, Pan X h, Lu Y h, Cao P. Antibacterial effects of cinnamon (Cinnamomum zeylanicum) bark essential oil on Porphyromonas gingivalis. Microb Pathog. 2018;116:26–32. https://doi.org/10.1002/ptr.5822.

    Article  CAS  PubMed  Google Scholar 

  87. Pei RS, Zhou F, Ji BP, Xu J. Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli with an improved method. J Food Sci. 2009;74(7). https://doi.org/10.1111/j.1750-3841.2009.01287.x.

    Article  CAS  PubMed  Google Scholar 

  88. Al-Zahrani MS. Increased intake of dairy products is related to lower periodontitis prevalence. J Periodontol. 2006;77(2):289–94. https://doi.org/10.1902/jop.2006.050082.

    Article  PubMed  Google Scholar 

  89. Kim MS, Hwang SS, Park EJ, Bae JW. Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation. Environ Microbiol Rep. 2013;5(5):765–75. https://doi.org/10.1111/1758-2229.12079.

    Article  CAS  PubMed  Google Scholar 

  90. Singh VP, Sharma J, Babu S, Rizwanulla, Singla A. Role of probiotics in health and disease: a review. J Pak Med Assoc 2013;63(2):253–257.

  91. Kim HS, Kim YY, Oh JK, Bae KH. Is yogurt intake associated with periodontitis due to calcium?, PLoS One. 2017;12(10). https://doi.org/10.1371/journal.pone.0187258.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Slawik S, Staufenbiel I, Schilke R, Nicksch S, Weinspach K, Stiesch M, et al. Probiotics affect the clinical inflammatory parameters of experimental gingivitis in humans. Eur J Clin Nutr. 2011;65(7):857–63. https://doi.org/10.1038/ejcn.2011.45.

    Article  CAS  PubMed  Google Scholar 

  93. Krasse P, Carlsson B, Dahl C, Paulsson A, Nilsson Å, Sinkiewicz G. Decreased gum bleeding and reduced gingivitis by the probiotic Lactobacillus reuteri. Swed Dent J. 2006;30(2):55–60.

    PubMed  Google Scholar 

  94. Lahner E, Bellisario C, Hassan C, Zullo A, Esposito G, Annibale B. Probiotics in the treatment of diverticular disease. A systematic review. J Gastrointest Liver Dis. 2016;25(1):79–86. https://doi.org/10.15403/jgld.2014.1121.251.srw.

    Article  Google Scholar 

  95. Abe-Yutori M, Chikazawa T, Shibasaki K, Murakami S. Decreased expression of E-cadherin by Porphyromonas gingivalis-lipopolysaccharide attenuates epithelial barrier function. J Periodontal Res. 2017;52(1):42–50. https://doi.org/10.1111/jre.12367.

    Article  CAS  PubMed  Google Scholar 

  96. Riccia DND, Bizzini F, Perilli MG, Polimeni A, Trinchieri V, Amicosante G, et al. Anti-inflammatory effects of Lactobacillus brevis (CD2) on periodontal disease. Oral Dis. 2007;13(4):376–85. https://doi.org/10.1111/j.1601-0825.2006.01291.x.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhisa Yamazaki.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oral Disease and Nutrition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulijaya, B., Takahashi, N., Yamazaki, K. et al. Nutrition as Adjunct Therapy in Periodontal Disease Management. Curr Oral Health Rep 6, 61–69 (2019). https://doi.org/10.1007/s40496-019-0216-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40496-019-0216-4

Keywords

Navigation