Skip to main content

Advertisement

Log in

Age and Periodontal Health—Immunological View

  • Epidemiology (M Laine, Section Editor)
  • Published:
Current Oral Health Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Aging clearly impacts a wide array of systems, in particular the breadth of the immune system leading to immunosenescence, altered immunoactivation, and coincident inflammaging processes. The net result of these changes leads to increased susceptibility to infections, increased neoplastic occurrences, and elevated frequency of autoimmune diseases with aging. However, as the bacteria in the oral microbiome that contribute to the chronic infection of periodontitis is acquired earlier in life, the characteristics of the innate and adaptive immune systems to regulate these members of the autochthonous microbiota across the lifespan remains ill-defined.

Recent Findings

Clear data demonstrate that both cells and molecules of the innate and adaptive immune response are adversely impacted by aging, including in the oral cavity, yielding a reasonable tenet that the increased periodontitis noted in aging populations is reflective of the age-associated immune dysregulation. Additionally, this facet of host-microbe interactions and disease needs to accommodate the population variation in disease onset and progression, which may also reflect an accumulation of environmental stressors and/or decreased protective nutrients that could function at the gene level (i.e., epigenetic) or translational level for production and secretion of immune system molecules.

Summary

Finally, the majority of studies of aging and periodontitis have emphasized the increased prevalence/severity of disease with aging, all based upon chronological age. However, evolving areas of study focusing on “biological aging” to help account for population variation in disease expression may suggest that chronic periodontitis represents a co-morbidity that contributes to “gerovulnerability” within the population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. O’Connor JE, Herrera G, Martínez-Romero A, de Oyanguren FS, Díaz L, Gomes A, et al. Systems biology and immune aging. Immunol Lett. 2014;162(1 Pt B):334–45.

    Article  PubMed  CAS  Google Scholar 

  2. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S4–9.

    Article  PubMed  Google Scholar 

  3. Castelo-Branco C, Soveral I. The immune system and aging: a review. Gynecol Endocrinol. 2014;30(1):16–22.

    Article  CAS  PubMed  Google Scholar 

  4. Taverna G, et al. Senescent remodeling of the innate and adaptive immune system in the elderly men with prostate cancer. Curr Gerontol Geriatr Res. 2014;2014:478126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Mabbott NA, Kobayashi A, Sehgal A, Bradford BM, Pattison M, Donaldson DS. Aging and the mucosal immune system in the intestine. Biogerontology. 2015;16(2):133–45.

    Article  CAS  PubMed  Google Scholar 

  6. Ebersole JL, Graves CL, Gonzalez OA, Dawson D III, Morford LA, Huja PE, et al. Aging, inflammation, immunity and periodontal disease. Periodontol. 2016;72(1):54–75.

    Article  Google Scholar 

  7. Shen-Orr SS, Furman D. Variability in the immune system: of vaccine responses and immune states. Curr Opin Immunol. 2013;25(4):542–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eke PI, et al. Update on prevalence of periodontitis in adults in the United States: NHANES 2009-2012. J Periodontol. 2015:1–18.

  9. Baelum V, Lopez R. Periodontal disease epidemiology—learned and unlearned? Periodontol. 2013;62(1):37–58.

    Article  Google Scholar 

  10. Eke PI, Dye BA, Wei L, Thornton-Evans GO, Genco RJ. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J Dent Res. 2012;91(10):914–20.

    Article  CAS  PubMed  Google Scholar 

  11. Eke PI, Zhang X, Lu H, Wei L, Thornton-Evans G, Greenlund KJ, et al. Predicting periodontitis at state and local levels in the United States. J Dent Res. 2016;95(5):515–22.

    Article  CAS  PubMed  Google Scholar 

  12. Saraiva L, Rebeis ES, Martins ES, Sekiguchi RT, Ando-Suguimoto ES, Mafra CES, et al. IgG sera levels against a subset of periodontopathogens and severity of disease in aggressive periodontitis patients: a cross-sectional study of selected pocket sites. J Clin Periodontol. 2014;41(10):943–51.

    Article  CAS  PubMed  Google Scholar 

  13. Hwang AM, Stoupel J, Celenti R, Demmer RT, Papapanou PN. Serum antibody responses to periodontal microbiota in chronic and aggressive periodontitis: a postulate revisited. J Periodontol. 2014;85(4):592–600.

    Article  CAS  PubMed  Google Scholar 

  14. • Ebersole JL, Dawson DR III, Morford LA, Peyyala R, Miller CS, Gonzaléz OA. Periodontal disease immunology: ‘double indemnity’ in protecting the host. Periodontol 2000. 2013;62(1):163–202 This article provides an overview of the breadth of armamentarium of responses that are generated in the oral cavity that define the host-microbe interactions to maintain health or succumb to disease.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Di Benedetto A, et al. Periodontal disease: linking the primary inflammation to bone loss. Clin Dev Immunol. 2013;2013:503754.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Garlet GP, Cardoso CR, Mariano FS, Claudino M, de Assis GF, Campanelli AP, et al. Regulatory T cells attenuate experimental periodontitis progression in mice. J Clin Periodontol. 2010;37(7):591–600.

    Article  CAS  PubMed  Google Scholar 

  17. Garlet GP. Destructive and protective roles of cytokines in periodontitis: a re-appraisal from host defense and tissue destruction viewpoints. J Dent Res. 2010;89(12):1349–63.

    Article  CAS  PubMed  Google Scholar 

  18. Rams TE, Listgarten MA, Slots J. Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis subgingival presence, species-specific serum immunoglobulin G antibody levels, and periodontitis disease recurrence. J Periodontal Res. 2006;41(3):228–34.

    Article  CAS  PubMed  Google Scholar 

  19. Pussinen PJ, Nyyssönen K, Alfthan G, Salonen R, Laukkanen JA, Salonen JT. Serum antibody levels to Actinobacillus actinomycetemcomitans predict the risk for coronary heart disease. Arterioscler Thromb Vasc Biol. 2005;25(4):833–8.

    Article  CAS  PubMed  Google Scholar 

  20. Ebersole JL. Humoral immune responses in gingival crevice fluid: local and systemic implications. Periodontol. 2003;31:135–66.

    Article  Google Scholar 

  21. Salminen A, Gursoy UK, Paju S, Hyvärinen K, Mäntylä P, Buhlin K, et al. Salivary biomarkers of bacterial burden, inflammatory response, and tissue destruction in periodontitis. J Clin Periodontol. 2014;41(5):442–50.

    Article  CAS  PubMed  Google Scholar 

  22. Liang S, Hosur KB, Domon H, Hajishengallis G. Periodontal inflammation and bone loss in aged mice. J Periodontal Res. 2010;45(4):574–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bullon P, Battino M, Varela-Lopez A, Perez-Lopez P, Granados-Principal S, Ramirez-Tortosa MC, et al. Diets based on virgin olive oil or fish oil but not on sunflower oil prevent age-related alveolar bone resorption by mitochondrial-related mechanisms. PLoS One. 2013;8(9):e74234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Arai K, Tanaka S, Yamamoto-Sawamura T, Sone K, Miyaishi O, Sumi Y. Aging changes in the periodontal bone of F344/N rat. Arch Gerontol Geriatr. 2005;40(3):225–9.

    Article  PubMed  Google Scholar 

  25. Lam RS, O’Brien-Simpson NM, Hamilton JA, Lenzo JC, Holden JA, Brammar GC, et al. GM-CSF and uPA are required for Porphyromonas gingivalis-induced alveolar bone loss in a mouse periodontitis model. Immunol Cell Biol. 2015;93(8):705–15.

    Article  CAS  PubMed  Google Scholar 

  26. Kim PD, Xia-Juan X, Crump KE, Abe T, Hajishengallis G, Sahingur SE. Toll-like receptor 9-mediated inflammation triggers alveolar bone loss in experimental murine periodontitis. Infect Immun. 2015;83(7):2992–3002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Araujo-Pires AC, Vieira AE, Francisconi CF, Biguetti CC, Glowacki A, Yoshizawa S, et al. IL-4/CCL22/CCR4 axis controls regulatory T-cell migration that suppresses inflammatory bone loss in murine experimental periodontitis. J Bone Miner Res. 2015;30(3):412–22.

    Article  PubMed  CAS  Google Scholar 

  28. Jiao Y, Darzi Y, Tawaratsumida K, Marchesan JT, Hasegawa M, Moon H, et al. Induction of bone loss by pathobiont-mediated Nod1 signaling in the oral cavity. Cell Host Microbe. 2013;13(5):595–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Graves DT, Kang J, Andriankaja O, Wada K, Rossa C Jr. Animal models to study host-bacteria interactions involved in periodontitis. Front Oral Biol. 2012;15:117–32.

    Article  PubMed  Google Scholar 

  30. • Franceschi C, Bonafè M, Valensin S, Olivieri F, de Luca M, Ottaviani E, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54 This overview provides a developing perspective of the relationship of chronic low level inflammation (inflammaging) and the observation of concomittant loss of immune response capabilities (immunoscenescence) with aging.

    Article  CAS  PubMed  Google Scholar 

  31. Baggio G, et al. Lipoprotein(a) and lipoprotein profile in healthy centenarians: a reappraisal of vascular risk factors. FASEB J. 1998;12(6):433–7.

    Article  CAS  PubMed  Google Scholar 

  32. Mari D, Mannucci PM, Coppola R, Bottasso B, Bauer KA, Rosenberg RD. Hypercoagulability in centenarians: the paradox of successful aging. Blood. 1995;85(11):3144–9.

    Article  CAS  PubMed  Google Scholar 

  33. Vallejo AN. Immunological hurdles of ageing: indispensable research of the human model. Ageing Res Rev. 2011;10(3):315–8.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gomez CR, Nomellini V, Faunce DE, Kovacs EJ. Innate immunity and aging. Exp Gerontol. 2008;43(8):718–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huttner EA, Machado DC, de Oliveira RB, Antunes AGF, Hebling E. Effects of human aging on periodontal tissues. Spec Care Dentist. 2009;29(4):149–55.

    Article  PubMed  Google Scholar 

  36. Miller RA. The aging immune system: primer and prospectus. Science. 1996;273(5271):70–4.

    Article  CAS  PubMed  Google Scholar 

  37. Hajishengallis G. Too old to fight? Aging and its toll on innate immunity. Mol Oral Microbiol. 2010;25(1):25–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kornman KS. Interleukin 1 genetics, inflammatory mechanisms, and nutrigenetic opportunities to modulate diseases of aging. Am J Clin Nutr. 2006;83(2):475S–83S.

    Article  CAS  PubMed  Google Scholar 

  39. Agrawal A, Agrawal S, Cao JN, Su H, Osann K, Gupta S. Altered innate immune functioning of dendritic cells in elderly humans: a role of phosphoinositide 3-kinase-signaling pathway. J Immunol. 2007;178(11):6912–22.

    Article  CAS  PubMed  Google Scholar 

  40. Wu Y, Dong G, Xiao W, Xiao E, Miao F, Syverson A, et al. Effect of aging on periodontal inflammation, microbial colonization, and disease susceptibility. J Dent Res. 2016;95(4):460–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tortorella C, Simone O, Piazzolla G, Stella I, Cappiello V, Antonaci S. Role of phosphoinositide 3-kinase and extracellular signal-regulated kinase pathways in granulocyte macrophage-colony-stimulating factor failure to delay Fas-induced neutrophil apoptosis in elderly humans. J Gerontol A Biol Sci Med Sci. 2006;61(11):1111–8.

    Article  PubMed  Google Scholar 

  42. Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015;15(1):30–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ebersole JL, Cappelli D, Holt SC. Periodontal diseases: to protect or not to protect is the question? Acta Odontol Scand. 2001;59(3):161–6.

    Article  CAS  PubMed  Google Scholar 

  44. Kinane DF, Mooney J, Ebersole JL. Humoral immune response to Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in periodontal disease. Periodontol. 1999;20:289–340.

    Article  CAS  Google Scholar 

  45. Kebschull M, Demmer RT, Grün B, Guarnieri P, Pavlidis P, Papapanou PN. Gingival tissue transcriptomes identify distinct periodontitis phenotypes. J Dent Res. 2014;93(5):459–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kebschull M, Guarnieri P, Demmer RT, Boulesteix AL, Pavlidis P, Papapanou PN. Molecular differences between chronic and aggressive periodontitis. J Dent Res. 2013;92(12):1081–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jonsson D, et al. Gingival tissue transcriptomes in experimental gingivitis. J Clin Periodontol. 2011;38(7):599–611.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kebschull M, Papapanou PN. The use of gene arrays in deciphering the pathobiology of periodontal diseases. Methods Mol Biol. 2010;666:385–93.

    Article  CAS  PubMed  Google Scholar 

  49. Demmer RT, Behle JH, Wolf DL, Handfield M, Kebschull M, Celenti R, et al. Transcriptomes in healthy and diseased gingival tissues. J Periodontol. 2008;79(11):2112–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ji S, Choi Y. Innate immune response to oral bacteria and the immune evasive characteristics of periodontal pathogens. J Periodontal Implant Sci. 2013;43(1):3–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Graves D. Cytokines that promote periodontal tissue destruction. J Periodontol. 2008;79(8 Suppl):1585–91.

    Article  CAS  PubMed  Google Scholar 

  52. • Lamster IB, Asadourian L, del Carmen T, Friedman PK. The aging mouth: differentiating normal aging from disease. Periodontol 2000. 2016;72(1):96–107 This report emphasizes the array of physiologic changes that occur with aging, emphasizing the characteristics of a healthy versus unhealthy aging mouth.

    Article  PubMed  Google Scholar 

  53. Lamster IB. Geriatric periodontology: how the need to care for the aging population can influence the future of the dental profession. Periodontol. 2016;72(1):7–12.

    Article  Google Scholar 

  54. Shaw AC, Goldstein DR, Montgomery RR. Age-dependent dysregulation of innate immunity. Nat Rev Immunol. 2013;13(12):875–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wenisch C, Patruta S, Daxböck F, Krause R, Hörl W. Effect of age on human neutrophil function. J Leukoc Biol. 2000;67(1):40–5.

    Article  CAS  PubMed  Google Scholar 

  56. Niwa Y, Kasama T, Miyachi Y, Kanoh T. Neutrophil chemotaxis, phagocytosis and parameters of reactive oxygen species in human aging: cross-sectional and longitudinal studies. Life Sci. 1989;44(22):1655–64.

    Article  CAS  PubMed  Google Scholar 

  57. Eskan MA, Jotwani R, Abe T, Chmelar J, Lim JH, Liang S, et al. The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss. Nat Immunol. 2012;13(5):465–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Butcher SK, Chahal H, Nayak L, Sinclair A, Henriquez NV, Sapey E, et al. Senescence in innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J Leukoc Biol. 2001;70(6):881–6.

    CAS  PubMed  Google Scholar 

  59. Fulop T, Larbi A, Douziech N, Fortin C, Guérard KP, Lesur O, et al. Signal transduction and functional changes in neutrophils with aging. Aging Cell. 2004;3(4):217–26.

    Article  CAS  PubMed  Google Scholar 

  60. Tseng CW, Kyme PA, Arruda A, Ramanujan VK, Tawackoli W, Liu GY. Innate immune dysfunctions in aged mice facilitate the systemic dissemination of methicillin-resistant S. aureus. PLoS One. 2012;7(7):e41454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tomay F, Wells K, Duong L, Tsu JW, Dye DE, Radley-Crabb HG, et al. Aged neutrophils accumulate in lymphoid tissues from healthy elderly mice and infiltrate T- and B-cell zones. Immunol Cell Biol. 2018;96:831–40.

    Article  CAS  PubMed  Google Scholar 

  62. Tseng CW, Liu GY. Expanding roles of neutrophils in aging hosts. Curr Opin Immunol. 2014;29:43–8.

    Article  CAS  PubMed  Google Scholar 

  63. Borenstein A, Fine N, Hassanpour S, Sun C, Oveisi M, Tenenbaum HC, et al. Morphological characterization of para- and proinflammatory neutrophil phenotypes using transmission electron microscopy. J Periodontal Res. 2018.

  64. Franceschi C. Cell proliferation, cell death and aging. Aging (Milano). 1989;1(1):3–15.

    CAS  Google Scholar 

  65. Zhao J, Zhao J, Legge K, Perlman S. Age-related increases in PGD(2) expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice. J Clin Invest. 2011;121(12):4921–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hearps AC, Martin GE, Angelovich TA, Cheng WJ, Maisa A, Landay AL, et al. Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell. 2012;11(5):867–75.

    Article  CAS  PubMed  Google Scholar 

  67. Aprahamian T, Takemura Y, Goukassian D, Walsh K. Ageing is associated with diminished apoptotic cell clearance in vivo. Clin Exp Immunol. 2008;152(3):448–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gardner JK, Cornwall SMJ, Musk AW, Alvarez J, Mamotte CDS, Jackaman C, et al. Elderly dendritic cells respond to LPS/IFN-gamma and CD40L stimulation despite incomplete maturation. PLoS One. 2018;13(4):e0195313.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Gardner JK, Mamotte CDS, Jackaman C, Nelson DJ. Modulation of dendritic cell and T cell cross-talk during aging: the potential role of checkpoint inhibitory molecules. Ageing Res Rev. 2017;38:40–51.

    Article  CAS  PubMed  Google Scholar 

  70. Agrawal A, Agrawal S, Gupta S. Role of dendritic cells in inflammation and loss of tolerance in the elderly. Front Immunol. 2017;8:896.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Cuervo AM, Macian F. Autophagy and the immune function in aging. Curr Opin Immunol. 2014;29:97–104.

    Article  CAS  PubMed  Google Scholar 

  72. Jing Y, Shaheen E, Drake RR, Chen N, Gravenstein S, Deng Y. Aging is associated with a numerical and functional decline in plasmacytoid dendritic cells, whereas myeloid dendritic cells are relatively unaltered in human peripheral blood. Hum Immunol. 2009;70(10):777–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Panda A, Qian F, Mohanty S, van Duin D, Newman FK, Zhang L, et al. Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J Immunol. 2010;184(5):2518–27.

    Article  CAS  PubMed  Google Scholar 

  74. Sridharan A, Esposo M, Kaushal K, Tay J, Osann K, Agrawal S, et al. Age-associated impaired plasmacytoid dendritic cell functions lead to decreased CD4 and CD8 T cell immunity. Age (Dordr). 2011;33(3):363–76.

    Article  CAS  Google Scholar 

  75. Qian F, Wang X, Zhang L, Lin A, Zhao H, Fikrig E, et al. Impaired interferon signaling in dendritic cells from older donors infected in vitro with West Nile virus. J Infect Dis. 2011;203(10):1415–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hazeldine J, Hampson P, Lord JM. Reduced release and binding of perforin at the immunological synapse underlies the age-related decline in natural killer cell cytotoxicity. Aging Cell. 2012;11(5):751–9.

    Article  CAS  PubMed  Google Scholar 

  77. Dunston CR, Griffiths HR. The effect of ageing on macrophage Toll-like receptor-mediated responses in the fight against pathogens. Clin Exp Immunol. 2010;161(3):407–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stahl SS, Tonna EA, Weiss R. The effects of aging on the proliferative activity of rat periodontal structures. J Gerontol. 1969;24(4):447–50.

    Article  CAS  PubMed  Google Scholar 

  79. Marwah AS, Meyer J, Weinmann JP. Mitotic rate of gingival epithelium in two age groups. J Investig Dermatol. 1956;27(4):237–47.

    Article  CAS  PubMed  Google Scholar 

  80. Ogura N, Matsuda U, Tanaka F, Shibata Y, Takiguchi H, Abiko Y. In vitro senescence enhances IL-6 production in human gingival fibroblasts induced by lipopolysaccharide from Campylobacter rectus. Mech Ageing Dev. 1996;87(1):47–59.

    Article  CAS  PubMed  Google Scholar 

  81. Takiguchi H, Yamaguchi M, Okamura H, Abiko Y. Contribution of IL-1 beta to the enhancement of Campylobacter rectus lipopolysaccharide-stimulated PGE2 production in old gingival fibroblasts in vitro. Mech Ageing Dev. 1997;98(1):75–90.

    Article  CAS  PubMed  Google Scholar 

  82. Oz HS, Puleo DA. Animal models for periodontal disease. J Biomed Biotechnol. 2011;2011:754857.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Holt SC, et al. Implantation of Bacteroides gingivalis in nonhuman primates initiates progression of periodontitis. Science. 1988;239(4835):55–7.

    Article  CAS  PubMed  Google Scholar 

  84. Schou S, Holmstrup P, Kornman KS. Non-human primates used in studies of periodontal disease pathogenesis: a review of the literature. J Periodontol. 1993;64(6):497–508.

    Article  CAS  PubMed  Google Scholar 

  85. Roth GS, Mattison JA, Ottinger MA, Chachich ME, Lane MA, Ingram DK. Aging in rhesus monkeys: relevance to human health interventions. Science. 2004;305(5689):1423–6.

    Article  CAS  PubMed  Google Scholar 

  86. Sato S, Kiyono H, Fujihashi K. Mucosal immunosenescence in the gastrointestinal tract: a mini-review. Gerontology. 2015;61(4):336–42.

    Article  CAS  PubMed  Google Scholar 

  87. • Muller L, Pawelec G. As we age: does slippage of quality control in the immune system lead to collateral damage? Ageing Res Rev. 2015;23(Pt A):116–23 This article emphasizes progressive changes in immune response capabilities that contribute to variation in the level and quality of immune responses that occur with aging.

    Article  PubMed  CAS  Google Scholar 

  88. Fulop T, et al. On the immunological theory of aging. Interdiscip Top Gerontol. 2014;39:163–76.

    Article  PubMed  Google Scholar 

  89. Boraschi D, Aguado MT, Dutel C, Goronzy J, Louis J, Grubeck-Loebenstein B, et al. The gracefully aging immune system. Sci Transl Med. 2013;5(185):185ps8.

    Article  PubMed  CAS  Google Scholar 

  90. Kirkwood TB, Franceschi C. Is aging as complex as it would appear? New perspectives in aging research. Ann N Y Acad Sci. 1992;663:412–7.

    Article  CAS  PubMed  Google Scholar 

  91. Linton PJ, Dorshkind K. Age-related changes in lymphocyte development and function. Nat Immunol. 2004;5(2):133–9.

    Article  CAS  PubMed  Google Scholar 

  92. Linehan E, Fitzgerald DC. Ageing and the immune system: focus on macrophages. Eur J Microbiol Immunol (Bp). 2015;5(1):14–24.

    Article  CAS  Google Scholar 

  93. Weng NP. Aging of the immune system: how much can the adaptive immune system adapt? Immunity. 2006;24(5):495–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Allman D, Miller JP. The aging of early B-cell precursors. Immunol Rev. 2005;205:18–29.

    Article  CAS  PubMed  Google Scholar 

  95. Swain S, Clise-Dwyer K, Haynes L. Homeostasis and the age-associated defect of CD4 T cells. Semin Immunol. 2005;17(5):370–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Frasca D, Diaz A, Romero M, Landin AM, Blomberg BB. Age effects on B cells and humoral immunity in humans. Ageing Res Rev. 2011;10(3):330–5.

    Article  CAS  PubMed  Google Scholar 

  97. Riley RL. Impaired B lymphopoiesis in old age: a role for inflammatory B cells? Immunol Res. 2013;57(1–3):361–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Frasca D, Blomberg BB. Aging impairs murine B cell differentiation and function in primary and secondary lymphoid tissues. Aging Dis. 2011;2(5):361–73.

    PubMed  PubMed Central  Google Scholar 

  99. Dunn-Walters DK, Ademokun AA. B cell repertoire and ageing. Curr Opin Immunol. 2010;22(4):514–20.

    Article  CAS  PubMed  Google Scholar 

  100. Allman D, Miller JP. B cell development and receptor diversity during aging. Curr Opin Immunol. 2005;17(5):463–7.

    Article  CAS  PubMed  Google Scholar 

  101. Frasca D, Riley RL, Blomberg BB. Humoral immune response and B-cell functions including immunoglobulin class switch are downregulated in aged mice and humans. Semin Immunol. 2005;17(5):378–84.

    Article  CAS  PubMed  Google Scholar 

  102. Frasca D, Blomberg BB. Aging affects human B cell responses. J Clin Immunol. 2011;31(3):430–5.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Geier JK, Schlissel MS. Pre-BCR signals and the control of Ig gene rearrangements. Semin Immunol. 2006;18(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  104. Ebersole JL, Taubman MA. The protective nature of host responses in periodontal diseases. Periodontol. 1994;5:112–41.

    Article  CAS  Google Scholar 

  105. Reinhardt RA, McDonald TL, Bolton RW, DuBois LM, Kaldahl WB. IgG subclasses in gingival crevicular fluid from active versus stable periodontal sites. J Periodontol. 1989;60(1):44–50.

    Article  CAS  PubMed  Google Scholar 

  106. Ebersole JL, al-Sabbagh M, Gonzalez OA, Dawson DR III. Aging effects on humoral immune responses in chronic periodontitis. J Clin Periodontol. 2018;45:680–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Johnson V, Johnson BD, Sims TJ, Whitney CW, Moncla BJ, Engel LD, et al. Effects of treatment on antibody titer to Porphyromonas gingivalis in gingival crevicular fluid of patients with rapidly progressive periodontitis. J Periodontol. 1993;64(6):559–65.

    Article  CAS  PubMed  Google Scholar 

  108. Vink C, Rudenko G, Seifert HS. Microbial antigenic variation mediated by homologous DNA recombination. FEMS Microbiol Rev. 2012;36(5):917–48.

    Article  CAS  PubMed  Google Scholar 

  109. Vinogradov E, King JD, Pathak AK, Harvill ET, Preston A. Antigenic variation among Bordetella: Bordetella bronchiseptica strain MO149 expresses a novel o chain that is poorly immunogenic. J Biol Chem. 2010;285(35):26869–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hall LM, et al. Sequence diversity and antigenic variation at the rag locus of Porphyromonas gingivalis. Infect Immun. 2005;73(7):4253–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Grogono-Thomas R, Blaser MJ, Ahmadi M, Newell DG. Role of S-layer protein antigenic diversity in the immune responses of sheep experimentally challenged with Campylobacter fetus subsp. fetus. Infect Immun. 2003;71(1):147–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sims TJ, Ali RW, Brockman ES, Skaug N, Page RC. Antigenic variation in Porphyromonas gingivalis ribotypes recognized by serum immunoglobulin G of adult periodontitis patients. Oral Microbiol Immunol. 1999;14(2):73–85.

    Article  CAS  PubMed  Google Scholar 

  113. Koomey M. Bacterial pathogenesis: a variation on variation in Lyme disease. Curr Biol. 1997;7(9):R538–40.

    Article  CAS  PubMed  Google Scholar 

  114. Valvano MA. Pathogenicity and molecular genetics of O-specific side-chain lipopolysaccharides of Escherichia coli. Can J Microbiol. 1992;38(7):711–9.

    Article  CAS  PubMed  Google Scholar 

  115. Roggen EL, de Breucker S, van Dyck E, Piot P. Antigenic diversity in Haemophilus ducreyi as shown by western blot (immunoblot) analysis. Infect Immun. 1992;60(2):590–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. DiRita VJ, Mekalanos JJ. Genetic regulation of bacterial virulence. Annu Rev Genet. 1989;23:455–82.

    Article  CAS  PubMed  Google Scholar 

  117. Riddle MS, Guerry P. Status of vaccine research and development for Campylobacter jejuni. Vaccine. 2016;34(26):2903–6.

    Article  CAS  PubMed  Google Scholar 

  118. Bai X, Borrow R. Genetic shifts of Neisseria meningitidis serogroup B antigens and the quest for a broadly cross-protective vaccine. Expert Rev Vaccines. 2010;9(10):1203–17.

    Article  CAS  PubMed  Google Scholar 

  119. Ebersole JL, Hall EE, Steffen MJ. Antigenic diversity in the periodontopathogen, Actinobacillus actinomycetemcomitans. Immunol Investig. 1996;25(3):203–14.

    Article  CAS  Google Scholar 

  120. Oliveira RR, et al. Levels of candidate periodontal pathogens in subgingival biofilm. J Dent Res. 2016;95(6):711–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mysak J, et al. Porphyromonas gingivalis: major periodontopathic pathogen overview. J Immunol Res. 2014;2014:476068.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Cugini C, Klepac-Ceraj V, Rackaityte E, Riggs JE, Davey ME. Porphyromonas gingivalis: keeping the pathos out of the biont. J Oral Microbiol. 2013;5.

    Article  Google Scholar 

  123. Holt SC, Ebersole JL. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the “red complex”, a prototype polybacterial pathogenic consortium in periodontitis. Periodontol. 2005;38:72–122.

    Article  Google Scholar 

  124. Chen T, Siddiqui H, Olsen I. In silico comparison of 19 Porphyromonas gingivalis strains in genomics, phylogenetics, phylogenomics and functional genomics. Front Cell Infect Microbiol. 2017;7:28.

    PubMed  PubMed Central  Google Scholar 

  125. Demmer RT, Squillaro A, Papapanou PN, Rosenbaum M, Friedewald WT, Jacobs DR, et al. Periodontal infection, systemic inflammation, and insulin resistance: results from the continuous National Health and Nutrition Examination Survey (NHANES) 1999-2004. Diabetes Care. 2012;35(11):2235–42.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Dye BA, Nowjack-Raymer R, Barker LK, Nunn JH, Steele JG, Tan S, et al. Overview and quality assurance for the oral health component of the National Health and Nutrition Examination Survey (NHANES), 2003-04. J Public Health Dent. 2008;68(4):218–26.

    Article  CAS  PubMed  Google Scholar 

  127. Dye BA, Barker LK, Selwitz RH, Lewis BG, Wu T, Fryar CD, et al. Overview and quality assurance for the National Health and Nutrition Examination Survey (NHANES) oral health component, 1999-2002. Community Dent Oral Epidemiol. 2007;35(2):140–51.

    Article  CAS  PubMed  Google Scholar 

  128. Slots J. Periodontology: past, present, perspectives. Periodontol. 2013;62(1):7–19.

    Article  Google Scholar 

  129. Slots J. Periodontitis: facts, fallacies and the future. Periodontol. 2017;75(1):7–23.

    Article  Google Scholar 

  130. Wong C, Goldstein DR. Impact of aging on antigen presentation cell function of dendritic cells. Curr Opin Immunol. 2013;25(4):535–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Makala LH, et al. Immunology. Antigen-presenting cells in the gut. J Biomed Sci. 2004;11(2):130–41.

    Article  CAS  PubMed  Google Scholar 

  132. Cutler CW, Teng YT. Oral mucosal dendritic cells and periodontitis: many sides of the same coin with new twists. Periodontol. 2007;45:35–50.

    Article  Google Scholar 

  133. Gonzalez OA, Novak MJ, Kirakodu S, Stromberg A, Nagarajan R, Huang CB, et al. Differential gene expression profiles reflecting macrophage polarization in aging and periodontitis gingival tissues. Immunol Investig. 2015;44(7):643–64.

    Article  CAS  Google Scholar 

  134. Ebersole JL, Kirakodu S, Novak MJ, Stromberg AJ, Shen S, Orraca L, et al. Cytokine gene expression profiles during initiation, progression and resolution of periodontitis. J Clin Periodontol. 2014;41:853–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Takayanagi H. Osteoimmunology and the effects of the immune system on bone. Nat Rev Rheumatol. 2009;5(12):667–76.

    Article  CAS  PubMed  Google Scholar 

  136. Feng X, McDonald JM. Disorders of bone remodeling. Annu Rev Pathol. 2011;6:121–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–42.

    Article  CAS  PubMed  Google Scholar 

  138. Pandruvada SN, Gonzalez OA, Kirakodu S, Gudhimella S, Stromberg AJ, Ebersole JL, et al. Bone biology-related gingival transcriptome in ageing and periodontitis in non-human primates. J Clin Periodontol. 2016;43(5):408–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pandruvada S, Ebersole JL, Huja SS. Inhibition of osteoclastogenesis by opsonized Porphyromonas gingivalis. FASEB BioAdvances. 2018.

  140. Benjamin RM. Oral health: the silent epidemic. Public Health Rep. 2010;125(2):158–9.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Grossi SG, Zambon JJ, Ho AW, Koch G, Dunford RG, Machtei EE, et al. Assessment of risk for periodontal disease. I. Risk indicators for attachment loss. J Periodontol. 1994;65(3):260–7.

    Article  CAS  PubMed  Google Scholar 

  142. Roberts FA, Darveau RP. Microbial protection and virulence in periodontal tissue as a function of polymicrobial communities: symbiosis and dysbiosis. Periodontol. 2015;69(1):18–27.

    Article  Google Scholar 

  143. Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet. 2005;366(9499):1809–20.

    Article  PubMed  Google Scholar 

  144. Meyle J, Chapple I. Molecular aspects of the pathogenesis of periodontitis. Periodontol. 2015;69(1):7–17.

    Article  Google Scholar 

  145. Vaiserman A. Early-life exposure to endocrine disrupting chemicals and later-life health outcomes: an epigenetic bridge? Aging Dis. 2014;5(6):419–29.

    PubMed  PubMed Central  Google Scholar 

  146. Saraiva MC, et al. Lead exposure and periodontitis in US adults. J Periodontal Res. 2007;42(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  147. Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol. 2014;35(1):3–11.

    Article  CAS  PubMed  Google Scholar 

  148. Larsson L, Thorbert-Mros S, Rymo L, Berglundh T. Influence of epigenetic modifications of the interleukin-10 promoter on IL10 gene expression. Eur J Oral Sci. 2012;120(1):14–20.

    Article  CAS  PubMed  Google Scholar 

  149. Schulz S, Immel UD, Just L, Schaller HG, Gläser C, Reichert S. Epigenetic characteristics in inflammatory candidate genes in aggressive periodontitis. Hum Immunol. 2016;77(1):71–5.

    Article  CAS  PubMed  Google Scholar 

  150. Abreu OJ, Tatakis DN, Elias-Boneta AR, López del Valle L, Hernandez R, Pousa MS, et al. Low vitamin D status strongly associated with periodontitis in Puerto Rican adults. BMC Oral Health. 2016;16(1):89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Antonoglou GN, Knuuttila M, Niemelä O, Raunio T, Karttunen R, Vainio O, et al. Low serum level of 1,25(OH)2 D is associated with chronic periodontitis. J Periodontal Res. 2015;50(2):274–80.

    Article  CAS  PubMed  Google Scholar 

  152. Jimenez M, Giovannucci E, Krall Kaye E, Joshipura KJ, Dietrich T. Predicted vitamin D status and incidence of tooth loss and periodontitis. Public Health Nutr. 2014;17(4):844–52.

    Article  PubMed  Google Scholar 

  153. Pattison DJ, Symmons DPM, Lunt M, Welch A, Bingham SA, Day NE, et al. Dietary beta-cryptoxanthin and inflammatory polyarthritis: results from a population-based prospective study. Am J Clin Nutr. 2005;82(2):451–5.

    Article  CAS  PubMed  Google Scholar 

  154. Gammone MA, Riccioni G, D’Orazio N. Carotenoids: potential allies of cardiovascular health? Food Nutr Res. 2015;59:26762.

    Article  PubMed  Google Scholar 

  155. Daraghmeh AH, Bertoia ML, al-Qadi MO, Abdulbaki AM, Roberts MB, Eaton CB. Evidence for the vitamin D hypothesis: the NHANES III extended mortality follow-up. Atherosclerosis. 2016;255:96–101.

    Article  CAS  PubMed  Google Scholar 

  156. Rahman I, Biswas SK, Kirkham PA. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol. 2006;72:1439–52.

    Article  CAS  PubMed  Google Scholar 

  157. Chapple IL. Potential mechanisms underpinning the nutritional modulation of periodontal inflammation. J Am Dent Assoc. 2009;140(2):178–84.

    Article  PubMed  Google Scholar 

  158. Najeeb S, Zafar M, Khurshid Z, Zohaib S, Almas K. The role of nutrition in periodontal health: an update. Nutrients. 2016;8(9).

    Article  PubMed Central  CAS  Google Scholar 

  159. Kondo K, Ishikado A, Morino K, Nishio Y, Ugi S, Kajiwara S, et al. A high-fiber, low-fat diet improves periodontal disease markers in high-risk subjects: a pilot study. Nutr Res. 2014;34(6):491–8.

    Article  CAS  PubMed  Google Scholar 

  160. Linden GJ, McClean KM, Woodside JV, Patterson CC, Evans A, Young IS, et al. Antioxidants and periodontitis in 60-70-year-old men. J Clin Periodontol. 2009;36(10):843–9.

    Article  CAS  PubMed  Google Scholar 

  161. Papapanou PN, Susin C. Periodontitis epidemiology: is periodontitis under-recognized, over-diagnosed, or both? Periodontol. 2017;75(1):45–51.

    Article  Google Scholar 

  162. Hajishengallis G. Aging and its impact on innate immunity and inflammation: implications for periodontitis. J Oral Biosci. 2014;56(1):30–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kim S, Jazwinski SM. Quantitative measures of healthy aging and biological age. Healthy Aging Res. 2015;4.

  164. Belsky DW, Moffitt TE, Cohen AA, Corcoran DL, Levine ME, Prinz JA, et al. Eleven telomere, epigenetic clock, and biomarker-composite quantifications of biological aging: do they measure the same thing? Am J Epidemiol. 2018;187(6):1220–30.

    Article  PubMed  Google Scholar 

  165. Maffei VJ, Kim S, Blanchard E IV, Luo M, Jazwinski SM, Taylor CM, et al. Biological aging and the human gut microbiota. J Gerontol A Biol Sci Med Sci. 2017;72(11):1474–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Hastings WJ, Shalev I, Belsky DW. Translating measures of biological aging to test effectiveness of geroprotective interventions: what can we learn from research on telomeres? Front Genet. 2017;8:164.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Belsky DW, et al. Change in the rate of biological aging in response to caloric restriction: CALERIE biobank analysis. J Gerontol A Biol Sci Med Sci. 2017;73(1):4–10.

    Article  PubMed  PubMed Central  Google Scholar 

  168. • Belsky DW, Caspi A, Houts R, Cohen HJ, Corcoran DL, Danese A, et al. Quantification of biological aging in young adults. Proc Natl Acad Sci U S A. 2015;112(30):E4104–10 This report summarizes findings from the population in the Dunedin Study birth cohort related to an array of measures that would better predict aging outcomes via modeling biological rather than chronological age.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Gurau F, et al. Anti-senescence compounds: a potential nutraceutical approach to healthy aging. Ageing Res Rev. 2018;46:14–31.

    Article  CAS  PubMed  Google Scholar 

  170. Schmitt R. Senotherapy: growing old and staying young? Pflugers Arch. 2017;469(9):1051–9.

    Article  CAS  PubMed  Google Scholar 

  171. Saraswat K, Rizvi SI. Novel strategies for anti-aging drug discovery. Expert Opin Drug Discov. 2017;12(9):955–66.

    Article  CAS  PubMed  Google Scholar 

  172. Moskalev A, Chernyagina E, Kudryavtseva A, Shaposhnikov M. Geroprotectors: a unified concept and screening approaches. Aging Dis. 2017;8(3):354–63.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Bulterijs S. Metformin as a geroprotector. Rejuvenation Res. 2011;14(5):469–82.

    Article  CAS  PubMed  Google Scholar 

  174. Vaiserman AM. Epigenetic engineering and its possible role in anti-aging intervention. Rejuvenation Res. 2008;11(1):39–42.

    Article  CAS  PubMed  Google Scholar 

  175. Linden GJ, Lyons A, Scannapieco FA. Periodontal systemic associations: review of the evidence. J Periodontol. 2013;84(4 Suppl):S8–S19.

    PubMed  Google Scholar 

  176. Byerley LO, et al. Development of a serum profile for healthy aging. Age (Dordr). 2010;32(4):497–507.

    Article  CAS  Google Scholar 

  177. Jazwinski SM, Kim S. Metabolic and genetic markers of biological age. Front Genet. 2017;8:64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Chen BH, Marioni RE, Colicino E, Peters MJ, Ward-Caviness CK, Tsai PC, et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging (Albany NY). 2016;8(9):1844–65.

    Article  CAS  Google Scholar 

  179. Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10(4):573–91.

    Article  Google Scholar 

  180. Levine ME, Crimmins EM. Is 60 the new 50? Examining changes in biological age over the past two decades. Demography. 2018;55(2):387–402.

    Article  PubMed  Google Scholar 

  181. Kim S, Bi X, Czarny-Ratajczak M, Dai J, Welsh DA, Myers L, et al. Telomere maintenance genes SIRT1 and XRCC6 impact age-related decline in telomere length but only SIRT1 is associated with human longevity. Biogerontology. 2012;13(2):119–31.

    Article  CAS  PubMed  Google Scholar 

  182. Kim S, Jazwinski SM. The gut microbiota and healthy aging: a mini-review. Gerontology. 2018:1–8.

  183. Levine ME. Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age? J Gerontol A Biol Sci Med Sci. 2013;68(6):667–74.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We want to thank M.J. Steffen, J. Stevens, and Dr. S.S. Kirakodu for expert technical support in developing biologic marker data for these types of studies. We also acknowledge the substantial contribution of the clinical personnel in the Delta Dental of Kentucky Clinical Research Center including L. Johnston, D. Dawson, D. Fogle, and H. Gallivan.

Funding

This work was supported by USPHS grants RR020145, DE017793, GM110788, GM103538, and TR000117 from the National Institutes of Health and funding from the Center for Oral Health Research in the UK College of Dentistry, as well as the Office of Research Infrastructure Programs (ORIP) of the National Institutes of Health (NIH) through Grant Number 5P40OD012217 to the Caribbean Primate Research Center. Infrastructure support was also provided, in part, by grants from the National Center for Research Resources G12RR003051 (National Center for Research Resources) and G12MD007600 (National Institute on Minority Health and Health Disparities) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey L. Ebersole.

Ethics declarations

Conflict of Interest

The authors declare that they no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Epidemiology

Electronic supplementary material

Supplemental Figure 1

Schematic of identified immunosenescence effects on cells of the innate and adaptive immune system. (JPG 103 kb)

Supplemental Figure 2

Transcriptomic profiles of gingival tissue genes associated with a range of pathways regulating the host responses to oral microbial challenge. The findings document the significant impact of aging on the biologic response features of these oral tissues, with certain pathways being elevated in aging (red) and others being decreased (blue) during aging processes. (JPG 68 kb)

Supplemental Figure 3

Schematic describing the contribution of cells and biomolecules to innate and adaptive immunity with interactions that link these host response systems to afford protection from infection and noxious challenge. (JPG 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebersole, J.L., Dawson, D.A., Emecen Huja, P. et al. Age and Periodontal Health—Immunological View. Curr Oral Health Rep 5, 229–241 (2018). https://doi.org/10.1007/s40496-018-0202-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40496-018-0202-2

Keywords

Navigation