Zirconia Implants: Is There a Future?


Purpose of Review

This review is making an overview of the behavior of the zirconia-toughened ceramic (ZTC) intended for use in the next generation of dental implants replacing zirconia (yttria-stabilized zirconia [Y-TZP]) currently in use.

Recent Findings

The new ZTCs are joining improved strength and toughness to the excellent biological behavior of TZP currently used worldwide for metal-free dental implants.


Most of the Y-TZP dental implants currently in use are one-piece designs. New two-piece designs are now in the market. This design results very demanding because of the mechanical behavior of the ceramic and poses some limitations in implant diameter. Thanks to the improved strength and toughness, the new ZTCs will allow the increase in the reliability of the present implant design and the production of implants with diameter smaller than the first generation ones.

This is a preview of subscription content, log in to check access.

Fig. 1



Zirconia-toughened alumina


Alumina-toughened zirconia


Strontium hexaluminate


Tetragonal zirconia polycrystal


Zirconia-toughened ceramic


Bone-implant contact


Low-temperature degradation


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    •• Sandhaus S. Materiau pour implants, prothèses et outils. Brevet Inv. N. 1.471.090, P.V.53.006, 1962. This patent is related to the first load-bearing device made out of oxide ceramic worldwide.

  2. 2.

    Heimke G, Shulte W. Dental implants having a biocompatible surface. US Patent 4.185.383, 1980.

  3. 3.

    Chess JT, Babbush CA. Restoration of lost dentition using aluminum oxide endosteal implants. Dent Clin N Am. 1980;24:521–33.

    PubMed  CAS  Google Scholar 

  4. 4.

    Kawahara H, Hirabayashi M, Shikita T. Single crystal alumina for dental implants and bone screws. Biomed Mater Res. 1980;14:597–605.

    Article  CAS  Google Scholar 

  5. 5.

    Takahashi T, Sato T, Hisanaga R, Miho O, Suzuki Y, Tsunoda M, et al. Long-term observation of porous sapphire dental implants. Bull Tokyo Dent Coll. 2008;49:23–7.

    Article  PubMed  Google Scholar 

  6. 6.

    Branemark PI, Hansson BO, Adell L, Breine U, Lindström J, Hallén O, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Recontr Surg Suppl. 1977;16:1–132.

    CAS  Google Scholar 

  7. 7.

    •• Miani C, Piconi C, Piselli D, Ponti M. Experimental in vivo studies on zirconia in oral implantology. Italian J Osseoint. 1993;3:23–34. One of the two papers that independently gave the first demonstration of the osseointegration of zirconia.

    Google Scholar 

  8. 8.

    •• Akagawa Y, Ichikawa Y, Nikai H, Tsuru H. Interface histology of unloaded and early loaded partially stabilized zirconia endosseous implant in initial bone healing. J Prosthet Dent. 1993;69:599–604. One of the two papers that independently gave the first demonstration of the osseointegration of zirconia.

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Piconi C, Rimondini L, Cerroni L. La zirconia in odontoiatria. Milano: Masson Elsevier Publ; 2008.

    Google Scholar 

  10. 10.

    Barwacz CA, Stanford CM, Diehl UA, Qian F, Cooper LF, Feine J, et al. Electronic assessment of peri-implant mucosal esthetics around three implant-abutment configurations: a randomized clinical trial. Clin Oral Impl Res. 2016;27:707–15.

    Article  Google Scholar 

  11. 11.

    Scarano A, Piattelli M, Caputi S, Favero GA, Piattelli A. Bacterial adhesion on commercially titanium and zirconium oxide disks: an in vivo human study. J Periodontol. 2004;75:292–6.

    Article  PubMed  Google Scholar 

  12. 12.

    Rimondini L, Cerroni L, Carrassi A, Torricelli P. Bacterial colonization of zirconia ceramic surfaces: an in vitro and in vivo study. Int J Oral Maxillofac Implants. 2002;17:793–8.

    PubMed  Google Scholar 

  13. 13.

    Piconi C, Ionescu A, Cochis A, Iasi E, Brambilla E, Rimondini L. Bioceramics materials show reduced pathological biofilm formation. Key Eng Mater. 2015;631:448–53.

    Article  CAS  Google Scholar 

  14. 14.

    Depprich R, Zipprich H, Ommerborn M, Naujoks C, Handschel J, Wiesmann HP, et al. Osseointegration of zirconia implants compared with titanium: an in vivo study. Head Face Med. 2008;4:30.

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Syed M. Allergic reactions to dental materials—a systematic review. J Clin Diagn Res. 2015;9:ZE04–9.

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Addison O, Davenport AJ, Newport RJ, Kalra S, Monir M, Mosselmans JF, et al. Do ‘passive’ medical titanium surfaces deteriorate in service in the absence of wear? J R Soc Interface. 2012;9:3161–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. 17.

    Olmedo DG, Tasat DR, Duffó G, Guglielmotti MB, Cabrini RL. The issue of corrosion in dental implants: a review. Acta Odontol Latinoam. 2009;22:3–9.

    PubMed  Google Scholar 

  18. 18.

    Sicilia A, Cuesta S, Coma G, Arregui I, Guisasola C, Ruiz E, et al. Titanium allergy in dental implant patients: a clinical study on 1500 consecutive patients. Clin Oral Implants Res. 2008;19:823–35.

    Article  PubMed  Google Scholar 

  19. 19.

    Siddiqi A, Payne AG, De Silva RK, Duncan WJ. Titanium allergy: could it affect dental implant integration? Clin Oral Implants Res. 2011;22:673–80.

    Article  PubMed  Google Scholar 

  20. 20.

    Fretwurst T, Nelson K, Tarnow DP, Wang H-L, Giannobile WV. Is metal particle release associated with peri-implant bone destruction? An emerging concept. J Dent Res. 2018;97:259–65.

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Safioti LM, Kotsakis GA, Pozhitkov AE, Chung WO, Daubert DM. Increased levels of dissolved titanium are associated with peri-implantitis—a cross-sectional study. J Periodontol. 2017;88:436–42.

    Article  PubMed  Google Scholar 

  22. 22.

    Lughi V, Sergo V. Low temperature degradation -aging- of zirconia: a critical review of the relevant aspects in dentistry. Dent Mater. 2010;26:807–20.

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    •• Garvie RC, Hannink RHJ, Pascoe RT. Ceramic steel? Nature. 1975;258:703–4. A landmark in the development of advanced ceramic materials.

    Article  CAS  Google Scholar 

  24. 24.

    • Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999;20:1–25. The most cited reference on this topic.

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    • Piconi C, Condò SG, Kosmac T. Alumina- and zirconia-based ceramics for load bearing applications. In: Shen JZ, Kosmac T, editors. Advanced ceramics for dentistry. Waltham: Butterworth-Heinemann; 2014. Comprehensive review of zirconia ceramics for dental applications.

    Google Scholar 

  26. 26.

    ISO 13356. Implants for surgery—ceramic materials based on yttria-stabilized tetragonal zirconia (Y-TZP). Geneva: International Standards Organization; 2008.

    Google Scholar 

  27. 27.

    Özcan M, Volpato CA, Fredel MC. Artificial aging of zirconium dioxide: an evaluation of current knowledge and clinical relevance. Curr Oral Health Rep. 2016;3:193–7.

    Article  Google Scholar 

  28. 28.

    Sanon C, Chevalier J, Douillard T, Kohal RJ, Coelho PG, Hjerppe J, et al. Low temperature degradation and reliability of one-piece ceramic oral implants with a porous surface. Dent Mater. 2013;29:389–97.

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Monzavi M, Noumbissi S, Nowzari H. The impact of in vitro accelerated aging, approximating 30 and 60 years in vivo, on commercially available zirconia dental implants. Clin Implant Dent Relat Res. 2017;19:245–52.

    Article  PubMed  Google Scholar 

  30. 30.

    Ross IM, Rainforth WM, McComb DW, Scott AJ, Brydson R. The role of trace addition of alumina to yttria-tetragonal zirconia polycrystals (Y-TZP). Scripta Mater. 2001;45:653–60.

    Article  CAS  Google Scholar 

  31. 31.

    Lawson S. Environmental degradation of zirconia ceramics. J Eur Ceram Soc. 1995;15:485–502.

    Article  CAS  Google Scholar 

  32. 32.

    Piconi C, Burger W, Richter HG, Vatteroni R, Cittadini A, Boccalari M. New Y-TZP powders for biomedical applications. J Mater Sci Mater Med. 1997;8:113–8.

    Article  PubMed  Google Scholar 

  33. 33.

    Matsui K, Yoshida H, Ikuhara Y. Nanocrystalline, ultra-degradation-resistant zirconia: its grain boundary nanostructure and nanochemistry. Sci Rep. 2014;4:4758.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. 34.

    Zhang F, Vanmeensel K, Inokoshi M, Batuk M, Hadermann J, Van Meerbeek B, et al. Critical influence of alumina content on the low temperature degradation of 2–3 mol% yttria-stabilized TZP for dental restorations. J Eur Ceram Soc. 2015;35:741–50.

    Article  CAS  Google Scholar 

  35. 35.

    Zhang F, Batuk M, Hadermann J, Manfredi G, Mariën A, Vanmeensel K, et al. Effect of cation dopant radius on the hydrothermal stability of tetragonal zirconia: grain boundary segregation and oxygen vacancy annihilation. Acta Mater. 2016;106:48–58.

    Article  CAS  Google Scholar 

  36. 36.

    Piconi C, Maccauro G, Angeloni M, Rossi B, Learmonth ID. Zirconia heads in perspective: a survey of zirconia outcomes in total hip replacement. Hip Intl. 2007;17:119–30.

    Article  CAS  Google Scholar 

  37. 37.

    Gahlert M, Burtscher D, Grunert I, Kniha H, Steinhauser E. Failure analysis of fractured dental zirconia implants. Clin Oral Implants Res. 2012;23:287–93.

    Article  PubMed  CAS  Google Scholar 

  38. 38.

    Osman RB, Swain MV, Atieh M, Ma S, Duncan W. Ceramic implants (Y-TZP): are they a viable alternative to titanium implants for the support of verdentures? A randomized clinical trial. Clin Oral Implants Res. 2014;25:1366–77.

    Article  PubMed  Google Scholar 

  39. 39.

    Stoichkov B, Kirov D. Analysis of the causes of dental implant fracture: a retrospective clinical study. Quintessence Int. 2018;12:1–8.

    Google Scholar 

  40. 40.

    Adolfsson E, Shen JZ. Defect minimization in prosthetic ceramics. In: Shen JZ, Kosmac T, editors. Advanced ceramics for dentistry. Waltham: Butterworth-Heinemann; 2014.

    Google Scholar 

  41. 41.

    Gutknecht D, Chevalier J, Garnier V, Fantozzi G. Key role of processing to avoid low temperature ageing in alumina zirconia composites for orthopaedic application. J Eur Ceram Soc. 2007;27:1547–52.

    Article  CAS  Google Scholar 

  42. 42.

    Shimada MTK. Thermal stability of Y2O3-partiallystabilized (Y-PSZ) and Y-PSZ/Al2O3 composites. J Mater Sci Lett. 1985;4:857–61.

    Article  Google Scholar 

  43. 43.

    Fabbri P, Piconi C, Burresi E, Magnani G, Mazzanti F, Mingazzini C. Lifetime estimation of a zirconia-alumina composite for biomedical applications. Dent Mater. 2014;30:138–42.

    Article  PubMed  CAS  Google Scholar 

  44. 44.

    Tsukuma K. Mechanical properties and thermal stability of CeO2 containing tetragonal zirconia polycrystals. Am Ceram Soc Bull. 1986;65:1386–9.

    CAS  Google Scholar 

  45. 45.

    Tsukuma K, Shimada M. Strength, fracture toughness and Vickers hardness of CeO2-stabilized tetragonal zirconia polycrystals (Ce-TZP). J Mater Sci. 1985;20:1178–84.

    Article  CAS  Google Scholar 

  46. 46.

    Schmid HK, Pennefather R, Meriani S, Schmid C. Redistribution of Ce and La during processing of Ce(La)-TZP/Al2O3 composites. J Eur Ceram Soc. 1992;72:761–4.

    Google Scholar 

  47. 47.

    Cutler RA, Lindemann JM, Ulvensøen JH, Lange HI. Damage-resistant SrO doped Ce-TZP/Al2O3 composites. Mater Des. 1994;15:123–33.

    Article  CAS  Google Scholar 

  48. 48.

    Maschio S, Pezzotti G, Sbaizero O. Effect of LaNbO4 addition on the mechanical properties of ceria-tetragonal zirconia polycrystal matrices. J Eur Ceram Soc. 1998;18:1779–85.

    Article  CAS  Google Scholar 

  49. 49.

    Magnani G, Brillante A. Effect of the composition and sintering process on mechanical properties and residual stresses in zirconia–alumina composites. J Eur Ceram Soc. 2005;25:3383–92.

    Article  CAS  Google Scholar 

  50. 50.

    Benzaid R, Chevalier J, Saâdaoui M, Fantozzi G, Nawa M, Diaz LA, et al. Fracture toughness, strength and slow crack growth in a ceria stabilized zirconia–alumina nanocomposite for medical applications. Biomaterials. 2008;29:3636–41.

    Article  PubMed  CAS  Google Scholar 

  51. 51.

    Kern F. A comparison of microstructure and mechanical properties of 12Ce-TZP reinforced with alumina and in situ formed strontium- or lanthanum hexaaluminate precipitates. J Eur Ceram Soc. 2014;34:413–23.

    Article  CAS  Google Scholar 

  52. 52.

    Palmero P, Fornabaio M, Montanaro L, Reveron H, Esnouf C, Chevalier J. Towards long lasting zirconia-based composites for dental implants. Part I: innovative synthesis, microstructural characterization and in vitro stability. Biomaterials. 2015;50:38–46.

    Article  PubMed  CAS  Google Scholar 

  53. 53.

    Nawa M, Nakamoto S, Sekino T, Niihara K. Tough and strong Ce-TZP/alumina nanocomposite doped with titania. Ceram Int. 1998;24:497–506.

    Article  CAS  Google Scholar 

  54. 54.

    Ban S, Sato H, Suehiro Y, Nakanishi H, Masahiro Nawa M. Biaxial flexure strength and low temperature degradation of Ce-TZP/Al2O3 nanocomposite and Y-TZP as dental restoratives. J Biomed Mater Res Part B: Appl Biomater. 2008;87B:492–8.

    Article  CAS  Google Scholar 

  55. 55.

    Oshima Y, Iwasa F, Tachi K, Baba K. Effect of nanofeatured topography on ceria-stabilized zirconia/alumina nanocomposite on osteogenesis and osseointegration. Int J Oral Maxillofac Implants. 2017;32:81–91.

    Article  PubMed  Google Scholar 

  56. 56.

    Kim DG, Kwon HJ, Jeong YH, Kosel E, Lee DJ, Han JS, et al. Mechanical properties of bone tissues surrounding dental implant systems with different treatments and healing periods. Clin Oral Investig. 2016;20:2211–20.

    Article  PubMed  Google Scholar 

  57. 57.

    Han JM, Hong G, Lin H, Shimizu Y, Wu Y, Zheng G, et al. Biomechanical and histological evaluation of the osseointegration capacity of two types of zirconia implant. Int J Nanomedicine. 2016;11:6507–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. 58.

    Igarashi K, Nakahara K, Haga-Tsujimura M, Kobayashi E, Watanabe F. Hard and soft tissue responses to three different implant materials in a dog model. Dent Mater. 2015;34:692–701.

    Article  CAS  Google Scholar 

  59. 59.

    Rieger W, Leyen S, Weber W. The use of bioceramics in dental and medical applications. Digital Dental News. 2009;3:6–13.

    Google Scholar 

  60. 60.

    Spies BC, Balmer M, Patzelt SBM, Vach K, Kohal R-J. Clinical and patient-reported outcomes of a zirconia oral implant: three-year results of a prospective cohort investigation. J Dental Res. 2015;94:1385–91.

    Article  CAS  Google Scholar 

  61. 61.

    Jank S, Hochgattener G. Succes rate of two piece zirconia implants: a retrospective statistical analysis. Implant Dent. 2016;25:193–8.

    Article  PubMed  Google Scholar 

  62. 62.

    Maccauro G, Bianchino G, Sangiorgi S, Magnani G, Marotta D, Manicone PF, et al. Development of a new zirconia-toughened alumina: promising mechanical properties and absence of in vitro carcinogenicity. Int J Immunopathol Pharmacol. 2009;22:773–9.

    Article  PubMed  CAS  Google Scholar 

  63. 63.

    Maccauro G, Cittadini A, Magnani G, Sangiorgi S, Muratori F, Manicone PF, et al. In vivo characterization of zirconia toughened alumina material: a comparative animal study. Int J Immunopathol Pharmacol. 2010;23:841–6.

    Article  PubMed  CAS  Google Scholar 

  64. 64.

    Schierano G, Mussano F, Faga MG, Menicucci G, Manzella C, Sabione C, et al. An alumina toughened zirconia composite for dental implant application: in vivo animal results. Biomed Res Int. 2015:157360.

  65. 65.

    Faga MG, Vallée A, Bellosi A, Mazzocchi M, Thinh NN, Martra G, et al. Chemical treatment on alumina–zirconia composites inducing apatite formation with maintained mechanical properties. J Eur Ceram Soc. 2012;32:2113–20.

    Article  CAS  Google Scholar 

  66. 66.

    Apel E, Ritzberger C, Courtois N, Reveron H, Chevalier J, Schweiger M, et al. Introduction to a tough, strong and stable Ce-TZP/MgAl2O4 composite for biomedical applications. J Eur Ceram Soc. 2012;32:2697–703.

    Article  CAS  Google Scholar 

  67. 67.

    ISO 6872. Dentistry-ceramic materials. Geneva: International Standards Organization; 2015.

    Google Scholar 

  68. 68.

    •• Touaiher I, Saâdaouia M, Chevalier J, Helen Reveron H. Effect of loading configuration on strength values in a highly transformable zirconia-based composite. Dental Mater. 2016;32:e211–9. This paper demonstrates the need to create a new standard for the measure of the mechanical strength of toughened dental ceramics.

    Article  CAS  Google Scholar 

  69. 69.

    Miura M, Hongoh H, Yogo T, Hirano S. Formation of plate-like lanthanum-β-aluminate crystal in Ce-TZP matrix. J Mater Sci. 1994;29:262–8.

    Article  CAS  Google Scholar 

  70. 70.

    • Burger W. Umwadlungs- und plateletverstaerkte Aluminiumoxidmatrixwerkstoffe (teil 1). Keram Z. 1997;49:1067–70. Seminal work for platelet-reinforced materials.

    CAS  Google Scholar 

  71. 71.

    • Burger W. Umwadlungs- und plateletverstaerkte Aluminiumoxidmatrixwerkstoffe (teil 2). Keram Z. 1998;50:18–22. Seminal work for platelet-reinforced materials.

    CAS  Google Scholar 

  72. 72.

    Burger W. Oxidkeramik wieder im Trend - neue Werkstoffe für die Medizintechnik und industrielle Anwendungen. Keram Z. 2012;2:134–7.

    Google Scholar 

  73. 73.

    Palmero P, Naglieri V, Chevalier J, Fantozzi G, Montanaro L. Alumina-based nanocomposites obtained by doping with inorganic salt solutions: application to immiscible and reactive systems. J Eur Ceram Soc. 2009;29:59–66.

    Article  CAS  Google Scholar 

  74. 74.

    Fornabaio M, Reveron H, Adolfsson E, Montanaro L, Chevalier J, Palmero P. Design and development of dental ceramics: examples of current innovations and future concepts. In: Palmero P, Cambier F, De Barra E, editors. Advances in ceramic biomaterials. Duxford: Woodhead Publ; 2017.

    Google Scholar 

  75. 75.

    Reveron H, Fornabaio M, Palmero P, Fürderer T, Adolfsson E, Lughi V, et al. Towards long lasting zirconia-based composites for dental implants: transformation induced plasticity and its consequence on ceramic reliability. Acta Biomater. 2017;48:423–32.

    Article  PubMed  CAS  Google Scholar 

  76. 76.

    Altmann B, Karygianni L, Al-Ahmad A, Butz F, Bächle M, Adolfsson E, et al. Assessment of novel long-lasting ceria-stabilized zirconia-based ceramics with different surface topographies as implant materials. Adv Funct Mater. 2017;27:1702512.

    Article  CAS  Google Scholar 

  77. 77.

    Gottwik L, Wippermann A, Kuntz M, Denkena B. Effect of strontium hexaluminate on the damage tolerance of yttria-stabilized zirconia. Ceram Int. 2017;43:15891–8.

    Article  CAS  Google Scholar 

  78. 78.

    Denkena B, Wippermann A, Busemann S, Kuntz M, Gottwik L. Comparison of residual strength behavior after indentation, scratching and grinding of zirconia-based ceramics for medical-technical applications. J Eur Ceram Soc. 2018;38:1760–8.

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Corrado Piconi.

Ethics declarations

Conflict of Interest

Corrado Piconi reports consultancy work for Medical Device Division, CeramTec GmbH, Plochingen, Germany. Simone Sprio declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Dental Restorative Materials

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Piconi, C., Sprio, S. Zirconia Implants: Is There a Future?. Curr Oral Health Rep 5, 186–193 (2018). https://doi.org/10.1007/s40496-018-0187-x

Download citation


  • Dental implants
  • Zirconia
  • Zirconia-toughened ceramics
  • Platelet-reinforced ceramics
  • Nanostructure