Skip to main content

Advertisement

Log in

Functional Dental Restorative Materials That Hinder Oral Biofilm

  • Microbiology (M Klein, Section Editor)
  • Published:
Current Oral Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review highlighted the state of the art regarding functional materials that have been used to hinder oral biofilm, focused on the materials used over the last 3 years to achieve an antimicrobial effect, considering the effects of its modification on the physical properties.

Recent Findings

Because dental restorations have failures and the main cause was found to be the presence of secondary caries, the recent studies in this field are focused on development of functional dental materials with the ability to hinder oral biofilm. Therefore, composite resins, glass ionomer cement, and dental adhesive systems have been modified with different functional materials to obtain the antibiofilm properties. For this purpose, several antimicrobial materials have been used, such as inorganic fillers nanoparticles, bioactive glass, functional monomers, and chlorhexidine.

Summary

The ability of materials to hinder biofilm-dependent diseases depends on the amount of the antimicrobial materials, size, physical and chemical properties. In the last years, studies have demonstrated great results in the use of materials aiming to decrease or control oral biofilm formation; however, some authors indicate that research of bacterial effects on these materials are still needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Chen L, Shen H, Suh BI. Antibacterial dental restorative materials: a state-of-the-art review. Am J Dent. 2012;25(6):337–46.

    PubMed  Google Scholar 

  2. Bourbia M, Ma D, Cvitkovitch DG, Santerre JP, Finer Y. Cariogenic bacteria degrade dental resin composites and adhesives. J Dent Res. 2013;92(11):989–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang JF, Wu R, Fan Y, Liao S, Wang Y, Wen ZT, et al. Antibacterial dental composites with chlorhexidine and mesoporous silica. J Dent Res. 2014;93(12):1283–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liang X, Soderling E, Liu F, He J, Lassila LV, Vallittu PK. Optimizing the concentration of quaternary ammonium dimethacrylate monomer in bis-GMA/TEGDMA dental resin system for antibacterial activity and mechanical properties. J Mater Sci Mater Med. 2014;25(5):1387–93.

    Article  CAS  PubMed  Google Scholar 

  5. Miki S, Kitagawa H, Kitagawa R, Kiba W, Hayashi M, Imazato S. Antibacterial activity of resin composites containing surface pre-reacted glass-ionomer (S-PRG) filler. Dent Mater. 2016;32(9):1095–102.

    Article  CAS  PubMed  Google Scholar 

  6. Korkut E, Torlak E, Altunsoy M. Antimicrobial and mechanical properties of dental resin composite containing bioactive glass. J Appl Biomater Funct Mater. 2016;14(3):e296–301.

    CAS  PubMed  Google Scholar 

  7. Khvostenko D, Hilton TJ, Ferracane JL, Mitchell JC, Kruzic JJ. Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations. Dent Mater. 2016;32(1):73–81.

    Article  CAS  PubMed  Google Scholar 

  8. He J, Soderling E, Lassila LV, Vallittu PK. Synthesis of antibacterial and radio-opaque dimethacrylate monomers and their potential application in dental resin. Dent Mater. 2014;30(9):968–76.

    Article  CAS  PubMed  Google Scholar 

  9. Tavassoli Hojati S, Alaghemand H, Hamze F, Ahmadian Babaki F, Rajab-Nia R, Rezvani MB, et al. Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dent Mater. 2013;29(5):495–505.

    Article  CAS  PubMed  Google Scholar 

  10. Poosti M, Ramazanzadeh B, Zebarjad M, Javadzadeh P, Naderinasab M, Shakeri MT. Shear bond strength and antibacterial effects of orthodontic composite containing TiO2 nanoparticles. Eur J Orthod. 2013;35(5):676–9.

    Article  PubMed  Google Scholar 

  11. Wilson AD, Kent BE. A new translucent cement for dentistry. The glass ionomer cement. Br Dent J. 1972;132(4):133–5.

    Article  CAS  PubMed  Google Scholar 

  12. Mhaville RJ, van Amerongen WE, Mandari GJ. Residual caries and marginal integrity in relation to Class II glass ionomer restorations in primary molars. Eur Arch Paediatr Dent. 2006;7(2):81–4.

    Article  CAS  PubMed  Google Scholar 

  13. Turkun LS, Turkun M, Ertugrul F, Ates M, Brugger S. Long-term antibacterial effects and physical properties of a chlorhexidine-containing glass ionomer cement. J Esthet Restor Dent. 2008;20(1):29–44.

    Article  PubMed  Google Scholar 

  14. Takahashi Y, Imazato S, Kaneshiro AV, Ebisu S, Frencken JE, Tay FR. Antibacterial effects and physical properties of glass-ionomer cements containing chlorhexidine for the ART approach. Dent Mater. 2006;22(7):647–52.

    Article  CAS  PubMed  Google Scholar 

  15. Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA. Bactericidal activity of photocatalytic TiO(2) reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol. 1999;65(9):4094–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52(4):662–8.

    Article  CAS  PubMed  Google Scholar 

  17. Cocco AR, Rosa WL, Silva AF, Lund RG, Piva E. A systematic review about antibacterial monomers used in dental adhesive systems: current status and further prospects. Dent Mater. 2015;31(11):1345–62.

    Article  CAS  PubMed  Google Scholar 

  18. Priyanka KP, Sukirtha TH, Balakrishna KM, Varghese T. Microbicidal activity of TiO2 nanoparticles synthesised by sol-gel method. IET Nanobiotechnol. 2016;10(2):81–6.

    Article  PubMed  Google Scholar 

  19. Garcia-Contreras R, Scougall-Vilchis RJ, Contreras-Bulnes R, Sakagami H, Morales-Luckie RA, Nakajima H. Mechanical, antibacterial and bond strength properties of nano-titanium-enriched glass ionomer cement. J Appl Oral Sci. 2015;23(3):321–8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang N, Chen C, Weir MD, Bai Y, Xu HH. Antibacterial and protein-repellent orthodontic cement to combat biofilms and white spot lesions. J Dent. 2015;43(12):1529–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346–53.

    Article  CAS  PubMed  Google Scholar 

  22. Damm CC, Münstedt H, Rösch A. Long-term antimicrobial polyamide 6/silver nanocomposites. J Mater Sci. 2007;42:6067–73.

    Article  CAS  Google Scholar 

  23. Freire PL, Albuquerque AJ, Farias IA, da Silva TG, Aguiar JS, Galembeck A, Flores MA, Sampaio FC, Stamford TC, Rosenblatt A. Antimicrobial and cytotoxicity evaluation of colloidal chitosan-silver nanoparticles-fluoride nanocomposites. Int J Biol Macromol. 2016;93:896–903.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang XF, Shen W, Gurunathan S. Silver nanoparticle-mediated cellular responses in various cell lines: an in vitro model. Int J Mol Sci. 2016;17(10):1603.

    Article  PubMed Central  Google Scholar 

  25. Hench LL, Paschall HA. Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res. 1973;7(3):25–42.

    Article  CAS  PubMed  Google Scholar 

  26. Chandrasekar RS, Lavu V, Kumar K, Rao SR. Evaluation of antimicrobial properties of bioactive glass used in regenerative periodontal therapy. J Indian Soc Periodontol. 2015;19(5):516–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Valanezhad A, Odatsu T, Udoh K, Shiraishi T, Sawase T, Watanabe I. Modification of resin modified glass ionomer cement by addition of bioactive glass nanoparticles. J Mater Sci Mater Med. 2016;27(1):3.

    Article  PubMed  Google Scholar 

  28. Chatzistavrou X, Velamakanni S, DiRenzo K, Lefkelidou A, Fenno JC, Kasuga T, et al. Designing dental composites with bioactive and bactericidal properties. Mater Sci Eng C Mater Biol Appl. 2015;52:267–72.

    Article  CAS  PubMed  Google Scholar 

  29. Buonocore MG. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Res. 1955;34(6):849–53.

    Article  CAS  PubMed  Google Scholar 

  30. Shafiei F, Memarpour M. Antibacterial activity in adhesive dentistry: a literature review. Gen Dent. 2012;60(6):e346–56. quiz p e57-8.

    PubMed  Google Scholar 

  31. Sakaguchi RL. Review of the current status and challenges for dental posterior restorative composites: clinical, chemistry, and physical behavior considerations. Summary of discussion from the Portland Composites Symposium (POCOS) June 17–19, 2004, Oregon Health and Science University, Portland, Oregon. Dent Mater. 2005;21(1):3–6.

    Article  PubMed  Google Scholar 

  32. de Almeida NA, Coutinho E, Cardoso MV, Lambrechts P, Van Meerbeek B. Current concepts and techniques for caries excavation and adhesion to residual dentin. J Adhes Dent. 2011;13(1):7–22.

    Google Scholar 

  33. Kopperud SE, Tveit AB, Gaarden T, Sandvik L, Espelid I. Longevity of posterior dental restorations and reasons for failure. Eur J Oral Sci. 2012;120(6):539–48.

    Article  PubMed  Google Scholar 

  34. Cheng L, Zhang K, Weir MD, Melo MA, Zhou X, Xu HH. Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries. Nanomedicine (Lond). 2015;10(4):627–41.

    Article  CAS  Google Scholar 

  35. Zhang K, Cheng L, Imazato S, Antonucci JM, Lin NJ, Lin-Gibson S, et al. Effects of dual antibacterial agents MDPB and nano-silver in primer on microcosm biofilm, cytotoxicity and dentine bond properties. J Dent. 2013;41(5):464–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang K, Li F, Imazato S, Cheng L, Liu H, Arola DD, et al. Dual antibacterial agents of nano-silver and 12-methacryloyloxydodecylpyridinium bromide in dental adhesive to inhibit caries. J Biomed Mater Res B Appl Biomater. 2013;101(6):929–38.

    Article  PubMed  Google Scholar 

  37. Kim SR, Shin DH. Antibacterial effect of self-etching adhesive systems on Streptococcus mutans. Restor Dent Endod. 2014;39(1):32–8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Polydorou O, Rogatti P, Bolek R, Wolkewitz M, Kummerer K, Hellwig E. Elution of monomers from three different bonding systems and their antibacterial effect. Odontology. 2013;101(2):170–6.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang N, Melo MA, Chen C, Liu J, Weir MD, Bai Y, et al. Development of a multifunctional adhesive system for prevention of root caries and secondary caries. Dent Mater. 2015;31(9):1119–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li F, Weir MD, Fouad AF, Xu HH. Effect of salivary pellicle on antibacterial activity of novel antibacterial dental adhesives using a dental plaque microcosm biofilm model. Dent Mater. 2014;30(2):182–91.

    Article  PubMed  Google Scholar 

  41. Cha HS, Shin DH. Antibacterial capacity of cavity disinfectants against Streptococcus mutans and their effects on shear bond strength of a self-etch adhesive. Dent Mater J. 2016;35(1):147–52.

    Article  CAS  PubMed  Google Scholar 

  42. Kramer N, Mohwald M, Lucker S, Domann E, Zorzin JI, Rosentritt M, et al. Effect of microparticulate silver addition in dental adhesives on secondary caries in vitro. Clin Oral Investig. 2015;19(7):1673–81.

    Article  PubMed  Google Scholar 

  43. Cai Y, Stromme M, Melhus A, Engqvist H, Welch K. Photocatalytic inactivation of biofilms on bioactive dental adhesives. J Biomed Mater Res B Appl Biomater. 2014;102(1):62–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Coordination for the Improvement of Higher Education Personnel (CAPES) and Amazon Research Foundation (FAPEAM) for the scholarships for the graduate students involved in this paper (H. B. Dias, V. T. F. S. Souza, R. A. Martins, A. C. B. Mendes, M. I. Ap. V. Souza).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Nara de Souza Rastelli.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Microbiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, H.B., da Silva Souza, V.T.F., Martins, R.A. et al. Functional Dental Restorative Materials That Hinder Oral Biofilm. Curr Oral Health Rep 4, 22–28 (2017). https://doi.org/10.1007/s40496-017-0119-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40496-017-0119-1

Keywords

Navigation