Skip to main content

Advertisement

Log in

Bonding of Dental Ceramics to Titanium: Processing and Conditioning Aspects

  • Dental Restorative Materials (M Özcan, section editor)
  • Published:
Current Oral Health Reports Aims and scope Submit manuscript

Abstract

Difficulties related to titanium processing (casting) and the problematic titanium-ceramic bond have been limiting the latter’s application in prosthetic dentistry for many years. Recent advances in subtractive and additive CAD/CAM technologies have provided alternative routes for titanium processing. The effect of a processing route on titanium surface characteristics and on the strength of its bond to porcelain need to be assessed, since most paths for enhancing porcelain bonding involve preparation of the titanium surface. Several approaches to bond enhancement have been proposed, some of which are widely accepted (abrasion by airborne-particle and application of a bonding agent), while others have not resulted in a clinical breakthrough. Despite efforts to improve titanium bonding to porcelain and to develop titanium compatible, low-fusing porcelains, many in vitro studies report bond strengths to titanium that are inferior to those for base metals and noble dental alloys. Only a few clinical studies have been reported, revealing that titanium-ceramic restorations are susceptible to mechanical complications (porcelain fractures in 33 % of cases). Current knowledge on titanium-ceramic bonding is here reviewed, focusing on the recent attempts to overcome the limitations of the system and on recent advances in titanium processing. Optimization of the currently available processing and surface conditioning methods seems to be necessary. Although most of the proposed surface preparation methods (surface coating and roughening) appear to show a certain degree of porcelain bond improvement, many of them require application of additional complex procedures. Simplification and improved efficiency therefore appear to be the essentials for implementation of these methods in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• of major importance

  1. Zarone F, Russo S, Sorrentino R. From porcelain-fused-to-metal to zirconia: clinical and experimental considerations. Dent Mater. 2001;27(1):83–96.

    Article  Google Scholar 

  2. Pjetursson BE, Sailer I, Makarov NA, Zwahlen M, Thoma DS. All-ceramic or metal ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part II: multiple-unit FDPs. Dent Mater. 2015;31(6):624–39.

    Article  CAS  PubMed  Google Scholar 

  3. Korkmaz T, Asar V. Comparative evaluation of bond strength of various metal-ceramic restorations. Mater Des. 2009;30(3):445–51.

    Article  CAS  Google Scholar 

  4. Grimaudo NJ. Biocompatibility of nickel and cobalt dental alloys. Gen Dent. 2001;49(5):498–503.

    CAS  PubMed  Google Scholar 

  5. Hildebrand HF, Veron C, Martin P. Nickel, chromium, cobalt dental alloys and allergic reactions: an overview. Biomaterials. 1989;10(8):545–8.

    Article  CAS  PubMed  Google Scholar 

  6. Elshahawy W, Watanabe I. Biocompatibility of dental alloys used in dental fixed prosthodontics. Tanta Dent J. 2014;11(2):150–9.

    Article  Google Scholar 

  7. Tvinnereim HV, Lundekvam BF, Morken T, Berge ME, Bjorkman L. Allergenic contact reactions to dental gold. Contact Dermatitis. 2003;48(5):288–9.

    Article  PubMed  Google Scholar 

  8. Möller H. Dental gold alloys and contact allergy. Contact Dermatitis. 2002;47(2):63–6.

    Article  PubMed  Google Scholar 

  9. Jorge JR, Barao VA, Delben JA, Faverani LP, Queiroz TP, Assuncao WG. Titanium in dentistry: historical development, state of the art and future perspectives. J Indian Prosthodont Soc. 2013;13(2):71–7.

    Article  PubMed  Google Scholar 

  10. Özcan M, Hämmerle C. Titanium as a reconstruction and implant material in dentistry: advantages and pitfalls. Materials. 2012;5:1528–45. doi:10.3390/ma5091528.

    Article  Google Scholar 

  11. Oh KT, Kim KN. Electrochemical properties of suprastructures galvanically coupled to a titanium implant. J Biomed Mater Res B Appl Biomater. 2004;70(2):318–31.

    Article  PubMed  Google Scholar 

  12. Lee JJ, Song KY, Ahn SG, Choi JY, Seo JM, Park JM. Evaluation of effect of galvanic corrosion between nickel-chromium metal and titanium on ion release and cell toxicity. J Adv Prosthodont. 2015;7(2):172–7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Haag P, Nilner K. Questions and answers on titanium-ceramic dental restorative systems: a literature study. Quintessence Int. 2007;38(1):e5–e13.

    PubMed  Google Scholar 

  14. Haag P, Nilner K. Bonding between titanium and dental porcelain: a systematic review. Acta Odontol Scand. 2010;68(3):154–64.

    Article  CAS  PubMed  Google Scholar 

  15. Lautenschlager EP, Monaghan P. Titanium and titanium alloys as dental materials. Int Dent J. 1993;43(3):245–53.

    CAS  PubMed  Google Scholar 

  16. Troia Jr MG, Henriques GE, Nobilo MA, Mesquita MF. The effect of thermal cycling on the bond strength of low-fusing porcelain to commercially pure titanium and titanium-aluminium-vanadium alloy. Dent Mater. 2003;19(8):790–6.

    Article  CAS  PubMed  Google Scholar 

  17. Lee BA, Kim OS, Vang MS, Park YJ. Effect of surface treatment on bond strength of Ti-10Ta-10Nb to low-fusing porcelain. J Prosthet Dent. 2013;109(2):95–105. This in vitro study showed that the Ti-10Ta-10Nb alloy is a suitable alternative for fabrication of titanium FDP frameworks, providing somewhat improved porcelain bond strength compared to cpTi and Ti6Al4V.

    Article  CAS  PubMed  Google Scholar 

  18. Ho W-F, Wu S-C, Hsu S-K, Fang L-S, Hsu H-C. Bond strength of Ti-5Cr based alloys to dental porcelain with Mo addition. Mater Des. 2013;43:233–6. This in vitro study suggested that the addition of Mo to the composition of the Ti-5Cr alloys could lower the CTE mismatch between the metal framework and the low-fusing porcelain, leading to somewhat enhanced porcelain bonding, with the Ti-5Cr-9Mo alloy showing best results.

    Article  CAS  Google Scholar 

  19. Suansuwan N, Swain MV. Adhesion of porcelain to titanium and titanium alloy. J Dent. 2003;31(7):509–18.

    Article  CAS  PubMed  Google Scholar 

  20. Bienias J, Surowska B, Stoch A, Matraszek H, Walczak M. The influence of SiO2 and SiO2-TiO2 intermediate coatings on bond strength of titanium and Ti6Al4V alloy to dental porcelain. Dent Mater. 2009;25(9):1128–35.

    Article  CAS  PubMed  Google Scholar 

  21. Mohsen CA. Effects of surface roughness and thermal cycling on bond strength of C.P. titanium and Ti-6Al-4V alloy to ceramic. J Prosthodont Res. 2012;56(3):204–9.

    Article  PubMed  Google Scholar 

  22. Yoda M, Konno T, Takada Y, Lijima K, Griggs J, Okuno O, et al. Bond strength of binary titanium alloys to porcelain. Biomaterials. 2001;22(12):1675–81.

    Article  CAS  PubMed  Google Scholar 

  23. Wu SC, Ho WF, Lin CW, Kikuchi H, Lin FT, Hsu HC. Surface characterization and bond strengths between Ti-20Cr-1X alloys and low-fusing porcelain. Dent Mater J. 2011;30(3):368–73.

    Article  CAS  PubMed  Google Scholar 

  24. Wu L, Zhu H, Gai X, Wang Y. Evaluation of the mechanical properties and porcelain bond strength of cobalt-chromium dental alloy fabricated by selective laser melting. J Prosthet Dent. 2014;111(1):51–5.

    Article  CAS  PubMed  Google Scholar 

  25. Bae EJ, Kim JH, Kim WC, Kim HY. Bond and fracture strength of metal-ceramic restorations formed by selective laser sintering. J Adv Prosthodont. 2014;6(4):266–71.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xiang N, Xin XZ, Chen J, Wei B. Metal-ceramic bond strength of Co-Cr alloy fabricated by selective laser melting. J Dent. 2012;40(6):453–7.

    Article  CAS  PubMed  Google Scholar 

  27. Zinelis S, Tsetsekou A, Papadopoulos T. Thermal expansion and microstructural analysis of experimental metal-ceramic titanium alloys. J Prosthet Dent. 2003;90(4):332–8.

    Article  CAS  PubMed  Google Scholar 

  28. Inan O, Acar A, Halkaci S. Effects of sandblasting and electrical discharge machining on porcelain adherence to cast and machined commercially pure titanium. J Biomed Mater Res B Appl Biomater. 2006;78(2):393–400.

    Article  PubMed  Google Scholar 

  29. Adachi M, Mackert Jr JR, Parry EE, Fairhurst CW. Oxide adherence and porcelain bonding to titanium and Ti-6Al-4V alloy. J Dent Res. 1990;69(6):1230–5.

    Article  CAS  PubMed  Google Scholar 

  30. Iseri U, Özkurt Z, Kazazoglu E. Shear bond strengths of veneering porcelain to cast, machined and laser-sintered titanium. Dent Mater J. 2011;30(3):274–80.

    Article  CAS  PubMed  Google Scholar 

  31. Milleding P, Haag P, Neroth B, Renz I. Two years of clinical experience with Procera titanium crowns. Int J Prosthodont. 1998;11(3):224–32.

    CAS  PubMed  Google Scholar 

  32. Hey J, Beuer F, Bensel T, Boeckler AF. Metal-ceramic-fixed dental prosthesis with CAD/CAM-fabricated substructures: 6-year clinical results. Clin Oral Invest. 2013;17(5):1447–51. This study evaluated the 6 year clinical behavior of CAD/CAM milled titanium-ceramic FDPs, showing poor clinical outcome for this system.

    Article  Google Scholar 

  33. Hey J, Beuer F, Bensel T, Boeckler AF. Single crowns with CAD/CAM-fabricated copings from titanium: 6-year clinical results. J Prosthet Dent. 2014;112(2):150–4. This study evaluated the 6 year clinical behavior of CAD/CAM milled titanium-ceramic single crowns, showing poor clinical outcome. The authors concluded that CAD/CAM milled titanium-ceramic single crowns cannot be considered as an acceptable clinical treatment alternative to high gold alloy PFM crowns.

    Article  CAS  PubMed  Google Scholar 

  34. Gilbert JL, Covey DA, Lautenschlager EP. Bond characteristics of porcelain fused to milled titanium. Dent Mater. 1994;10:134–40.

    Article  CAS  PubMed  Google Scholar 

  35. Boeckler AF, Lee H, Stadler A, Setz JM. Prospective observation of CAD/CAM titanium ceramic single crowns: a three-year follow up. J Prosthet Dent. 2009;102(5):290–7.

    Article  CAS  PubMed  Google Scholar 

  36. Nilson H, Bergman B, Bessing C, Lundqvist P, Andersson M. Titanium copings veneered with Procera ceramics: a longitudinal clinical study. Int J Prosthodont. 1994;7(2):115–9.

    CAS  PubMed  Google Scholar 

  37. Lövgren R, Andersson B, Carlsson GE, Odman P. Prospective clinical 5-year study of ceramic-veneered titanium restorations with the Procera system. J Prosthet Dent. 2000;84(5):514–21.

    Article  PubMed  Google Scholar 

  38. Chai J, McGivney GP, Munoz CA, Rubenstein JE. A multicenter longitudinal clinical trial of a new system for restorations. J Prosthet Dent. 1997;77(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  39. Walter M, Reppel PD, Boning K, Freesmeyer WB. Six-year follow-up of titanium and high-gold porcelain-fused-to-metal fixed partial dentures. J Oral Rehabil. 1999;26(2):91–6.

    Article  CAS  PubMed  Google Scholar 

  40. Bergman B, Nilson H, Andersson M. A longitudinal clinical study of Procera ceramic-veneered titanium copings. Int J Prosthodont. 1999;12(2):135–9.

    CAS  PubMed  Google Scholar 

  41. Bergman B, Marklund S, Nilson H, Hedlund SO. An intraindividual clinical comparison of 2 metal-ceramic systems. Int J Prosthodont. 1999;12(5):444–7.

    CAS  PubMed  Google Scholar 

  42. van Noort R. The future of dental devices is digital. Dent Mater. 2012;28(1):3–12.

    Article  PubMed  Google Scholar 

  43. Attar H, Calin M, Zhang LC, Scudino S, Eckert J. Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Mater Sci Eng A. 2014;593:170–7.

    Article  CAS  Google Scholar 

  44. Xu D, Xiang N, Wei B. The marginal fit of selective laser melting-fabricated metal crowns: an in vitro study. J Prosthet Dent. 2014;112(6):1437–40.

    Article  PubMed  Google Scholar 

  45. Huang Z, Zhang L, Zhu J, Zhang X. Clinical marginal and internal fit of metal ceramic crowns fabricated with a selective laser melting technology. J Prosthet Dent. 2015;113(6):623–7.

    Article  PubMed  Google Scholar 

  46. Abou Tara M, Eschbach S, Bohlsen F, Kern M. Clinical outcome of metal-ceramic crowns fabricated with laser-sintering technology. Int J Prosthodont. 2011;24(1):46–8.

    PubMed  Google Scholar 

  47. Li BH, Ye JT, Liao JK, Zhuang PL, Zhang YP, Li JY. Effect of pretreatments on the metal-ceramic bonding strength of a Pd-Ag alloy. J Dent. 2014;42(3):319–28.

    Article  CAS  PubMed  Google Scholar 

  48. Sipahi C, Özcan M. Interfacial shear bond strength between different base metal alloys and five low fusing feldspathic ceramic systems. Dent Mater J. 2012;31(3):333–7.

    Article  CAS  PubMed  Google Scholar 

  49. Lopes SC, Pagnano VO, Rollo JM, Leal MB, Bezzon OL. Correlation between metal-ceramic bond strength and coefficient of linear thermal expansion difference. J Appl Oral Sci. 2009;17(2):122–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Leal MB, Pagnano VO, Bezzon OL. Effect of investment type and mold temperature on casting accuracy and titanium-ceramic bond. Braz Dent J. 2013;24(1):40–6.

    Article  PubMed  Google Scholar 

  51. Zinelis S, Barmpagadaki X, Vergos V, Chakmakchi M, Eliades G. Bond strength and interfacial characterization of eight low fusing porcelains to cp Ti. Dent Mater. 2010;26(3):264–73.

    Article  CAS  PubMed  Google Scholar 

  52. Mabrurkar V, Habbu N, Hashmi SW, Musani S, Joshi N. In-vitro investigation to evaluate the flexural bond strengths of three commercially available ultra low fusing ceramic systems to Grade II titanium. J Int Oral Health. 2013;5(5):101–7.

    PubMed  PubMed Central  Google Scholar 

  53. Zhang Z, Tan F, Ba Y, Zhang Y. Effects of different bond agents on commercially pure Ti-porcelain bond strength. Mater Lett. 2013;109:214–6.

    Article  CAS  Google Scholar 

  54. ISO 9693–1:2012 Dentistry-Compatibility testing-Part 1: Metal-ceramic systems. Geneva: International organization for standardization; 2012.

  55. Oyafuso DK, Özcan M, Bottino MA, Itinoche MK. Influence of thermal and mechanical cycling on the flexural strength of ceramics with titanium or gold alloy frameworks. Dent Mater. 2008;24(3):351–6.

    Article  CAS  PubMed  Google Scholar 

  56. Atsü S, Berksun S. Bond strength of three porcelains to two forms of titanium using two firing atmospheres. J Prosthet Dent. 2000;84(5):567–74.

    Article  PubMed  Google Scholar 

  57. Al Hussaini I, Al Wazzan KA. Effect of surface treatment on bond strength of low-fusing porcelain to commercially pure titanium. J Prosthet Dent. 2005;94(4):350–6.

    Article  CAS  PubMed  Google Scholar 

  58. Yilmaz H, Dincer C. Comparison of the bond compatibility of titanium and an NiCr alloy to dental porcelain. J Dent. 1999;27(3):215–22.

    Article  CAS  PubMed  Google Scholar 

  59. Vasquez VZ, Özcan M, Kimpara ET. Evaluation of interface characterization and adhesion of glass ceramics to commercially pure titanium and gold alloy after thermal- and mechanical-loading. Dent Mater. 2009;25(2):221–31.

    Article  CAS  PubMed  Google Scholar 

  60. Guo L, Shi Y, Guo L, Zhang Q, Tian J, Zhu Y, et al. Preparation and characterization of a titanium bonding porcelain. Mater Sci Eng C. 2012;32(6):1531–5.

    Article  CAS  Google Scholar 

  61. Özcan I, Uysal H. Effects of silicon coating on bond strength of two different titanium ceramic to titanium. Dent Mater. 2005;21(8):773–9.

    Article  PubMed  Google Scholar 

  62. Papadopoulos TD, Spyropoulos KD. The effect of a ceramic coating on the cpTi-porcelain bond strength. Dent Mater. 2009;25(2):247–53.

    Article  CAS  PubMed  Google Scholar 

  63. Bondioli IR, Bottino MA. Evaluation of shear bond strength at the interface of two porcelains and pure titanium injected into the casting mold at three different temperatures. J Prosthet Dent. 2004;91(6):541–7.

    Article  CAS  PubMed  Google Scholar 

  64. Esquivel JF, Chai J, Wozniak WT. The physical properties of low-fusing porcelains for titanium. Int J Prosthodont. 1996;9(6):563–71.

    CAS  PubMed  Google Scholar 

  65. Vasquez V, Özcan M, Nishioka R, Souza R, Mesquita A, Pavanelli C. Mechanical and thermal cycling effects on the flexural strength of glass ceramics fused to titanium. Dent Mater J. 2008;27(1):7–15.

    Article  CAS  PubMed  Google Scholar 

  66. Kimmich M, Stappert CF. Intraoral treatment of veneering porcelain chipping of fixed dental restorations: a review and clinical application. J Am Dent Assoc. 2013;144(1):31–44.

    Article  CAS  PubMed  Google Scholar 

  67. Özcan M, Niedermeier W. Clinical study of the reasons for and location of failures of metal-ceramic restorations and survival of repairs. Int J Prosthodont. 2002;15(3):299–302.

    PubMed  Google Scholar 

  68. Özcan M, Kumbuloglu O. Effect of composition, viscosity and thickness of the opaquer on the adhesion of resin composite to titanium. Dent Mater. 2009;25(10):1248–55.

    Article  PubMed  Google Scholar 

  69. Özcan M, Valandro L. Effect of silane coupling agents and alloy primers on adhesion to titanium. Minerva Stomatol. 2011;60(9):427–34.

    PubMed  Google Scholar 

  70. Reyes MJ, Oshida Y, Andres CJ, Barco T, Hovijitra S, Brown D. Titanium-porcelain system. Part III: effects of surface modification on bond strengths. Biomed Mater Eng. 2001;11(2):117–36.

    CAS  PubMed  Google Scholar 

  71. Carpenter MA, Goodkind RJ. Effect of varying surface texture on bond strength of one semiprecious and one nonprecious ceramo-alloy. J Prosthet Dent. 1972;42:86–95.

    Article  Google Scholar 

  72. Chakmakchi M, Eliades G, Zinelis S. Bonding agents of low fusing cpTi porcelains: elemental and morphological characterization. J Prosthodont Res. 2009;53(4):166–71.

    Article  PubMed  Google Scholar 

  73. Wang CS, Chen KK, Tajima K, Nagamatsu Y, Kakigawa H, Kozono Y. Effects of sandblasting media and steam cleaning on bond strength of titanium-porcelain. Dent Mater J. 2010;29(4):381–91.

    Article  CAS  PubMed  Google Scholar 

  74. Papadopoulos T, Tsetsekou A, Eliades G. Effect of aluminium oxide sandblasting on cast commercially pure titanium surfaces. Eur J Prosthodont Restor Dent. 1999;7(1):15–21.

    CAS  PubMed  Google Scholar 

  75. Galo R, Ribeiro RF, Rodrigues RC, Pagnano Vde O, Mattos MG. Effect of laser welding on the titanium ceramic tensile bond strength. J Appl Oral Sci. 2011;19(4):301–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim JT, Cho SA. The effects of laser etching on shear bond strength at the titanium ceramic interface. J Prosthet Dent. 2009;101(2):101–6.

    Article  CAS  PubMed  Google Scholar 

  77. Akin H, Tugut F, Topcuoglu S, Kirmali O. Effects of sandblasting and laser irradiation on shear bond strength of low-fusing porcelain to titanium. J Adhes Dent. 2013;15(1):55–63. This in vitro study proposed different laser irradiation parameters for titanium surface preparation prior to porcelain application, exploring their effect on porcelain bonding. The manuscript provides clear laser etching parameters guidelines for achieving optimal results.

    CAS  PubMed  Google Scholar 

  78. Troia Jr MG, Henriques GE, Mesquita MF, Fragoso WS. The effect of surface modifications on titanium to enable titanium-porcelain bonding. Dent Mater. 2008;24(1):28–33.

    Article  CAS  PubMed  Google Scholar 

  79. Elsaka SE, Swain MV. Effect of surface treatments on adhesion of low-fusing porcelain to titanium as determined by strain energy release rate. Dent Mater. 2011;27(12):1213–20.

    Article  CAS  PubMed  Google Scholar 

  80. Cai Z, Bunce N, Nunn ME, Okabe T. Porcelain adherence to dental cast CP titanium: effects of surface modifications. Biomaterials. 2001;22(9):979–86.

    Article  CAS  PubMed  Google Scholar 

  81. Kimura H, Horng CJ, Okazaki M, Takahashi J. Oxidation effects on porcelain-titanium interface reactions and bond strength. Dent Mater J. 1990;9(1):91–9.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang CC, Ye JT, Zhang YP, Liao JK, Li BH. Effect of titanium preoxidation on wrought pure titanium to ceramic bond strength. J Prosthet Dent. 2013;109(2):106–12.

    Article  CAS  PubMed  Google Scholar 

  83. Curtis JG, Dossett J, Prihoda TJ, Teixeira EC. Effect of bonding agent application method on titanium-ceramic bond strength. J Prosthodont. 2014;00:1–7. doi:10.1111/jopr.122234.

    CAS  Google Scholar 

  84. Suansuwan N, Swain MV. New approach for evaluating metal-porcelain interfacial bonding. Int J Prosthodont. 1999;12(6):547–52.

    CAS  PubMed  Google Scholar 

  85. Tholey MJ, Waddell JN, Swain MV. Influence of the bonder on the adhesion of porcelain to machined titanium as determined by the strain energy release rate. Dent Mater. 2007;23(7):822–8.

    Article  CAS  PubMed  Google Scholar 

  86. Yamada K, Onizuka T, Endo K, Ohno H, Swain MV. The influence of Goldbonder and pre-heat treatment on the adhesion of titanium alloy and porcelain. J Oral Rehabil. 2005;32(3):213–20.

    Article  CAS  PubMed  Google Scholar 

  87. Homann F, Waddell JN, Swain MV. Influence of water, loading rate and bonder on the adhesion of porcelain to titanium. J Dent. 2006;34(7):485–90.

    Article  CAS  PubMed  Google Scholar 

  88. Lin MC, Huang HH. Improvement in dental porcelain bonding to milled, noncast titanium surfaces by gold sputter coating. J Prosthodont. 2014;23(7):540–8.

    Article  PubMed  Google Scholar 

  89. Khung R, Suansuwan NS. Effect of gold sputtering on the adhesion of porcelain to cast and machined titanium. J Prosthet Dent. 2013;110(1):41–6. This in vitro study showed approximately 56% of porcelain bond enhancement (as determined by strain energy release rate) when cast and machined titanium were sputter coated with gold.

    Article  CAS  PubMed  Google Scholar 

  90. Sadeq A, Cai Z, Woody RD, Miller AW. Effects of interfacial variables on ceramic adherence to cast and machined commercially pure titanium. J Prosthet Dent. 2003;90(1):10–7.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang Z, Zhang P, Guo L, Guo T, Yang J. Effect of TiO2–SiO2 sol–gel coating on the cpTi–porcelain bond strength. Mater Lett. 2011;65(7):1082–5.

    Article  CAS  Google Scholar 

  92. Wang A, Ge C, Yin H, Gao Y, Jiang T, Xia C, et al. Evolution of silica coating layer on titanium surface and the effect on the bond strength between titanium and porcelain. Appl Surf Sci. 2013;276:723–30. This in vitro study proposed an alternative method for chemical deposition of SiO 2 coating on titanium surfaces. The results showed significant porcelain bond enhancement compared to uncoated titanium.

  93. Park S, Kim Y, Lim H, Oh G, Kim H, Ong JL, et al. Gold and titanium nitride coatings on cast and machined commercially pure titanium to improve titanium–porcelain adhesion. Surf Coat Technol. 2009;203(20–21):3243–9.

    Article  CAS  Google Scholar 

  94. Elsaka SE, Hamouda IM, Elewady YA, Abouelatta OB, Swain MV. Influence of chromium interlayer on the adhesion of porcelain to machined titanium as determined by the strain energy release rate. J Dent. 2010;38(8):648–54.

    Article  CAS  PubMed  Google Scholar 

  95. Wang G, Wang X, Zhao Y, Guo T. Effect of a magnetron-sputtered ZrSiN/ZrO2 film on the bond strength of commercially pure titanium to porcelain. J Prosthet Dent. 2013;109(5):313–8. This in vitro study introduced an alternative titanium surface coating, exploring its effect on porcelain bonding. The results showed improved porcelain bonding compared to the uncoated specimens.

    Article  CAS  PubMed  Google Scholar 

  96. Marcelli E, Costantino ML, Villa T, Bagnoli P, Zannoli R, Corazza I, et al. Effect of intermediate ZrO2-CaO coatings deposited by cold thermal spraying on the titanium-porcelain bond in dental restorations. J Prosthet Dent. 2014;112(5):1201–11. This in vitro study introduced an alternative titanium surface coating, exploring its effect on porcelain bonding. The results showed improved porcelain bonding compared to the uncoated specimens.

    Article  CAS  PubMed  Google Scholar 

  97. Guo L, Tian J, Wu J, Li B, Zhu Y, Xu C, et al. Effect of nano-porous film on the bonding strength of titanium–porcelain. Mater Lett. 2013;109:140–2.

    Article  CAS  Google Scholar 

  98. Guo L, Chen X, Liu X, Feng W, Li B, Lin C, et al. Surface modifications and Nano-composite coatings to improve the bonding strength of titanium-porcelain. Mater Sci Eng C. 2016;61:143–8. This in vitro study explored the effect of titanium anodization on the porcelain bond strength, modifying the coating procedure compared to a previously published study and thereby achieving better results.

    Article  CAS  Google Scholar 

  99. Aslan MA, Ural C, Arici S. Investigation of the effect of titanium alloy surface coating with different techniques on titanium-porcelain bonding. J Prosthet Dent. 2016;115(1):115–22. This in vitro study explored the effect of titanium micro-arc oxidation and hydroxyapatite coating on the porcelain bond strength. The results showed that titanium coating with either of these two proposed coatings provided enhanced porcelain bonding.

    Article  CAS  PubMed  Google Scholar 

  100. Li J-X, Zhang Y-M, Han Y, Zhao Y-M. Effects of micro-arc oxidation on bond strength of titanium to porcelain. Surf Coat Technol. 2010;204(8):1252–8.

    Article  CAS  Google Scholar 

  101. Toptan F, Alves AC, Henriques B, Souza JC, Coelho R, Silva FS, et al. Influence of the processing route of porcelain/Ti-6Al-4V interfaces on shear bond strength. J Mech Behav Biomed Mater. 2013;20:327–37.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Jevnikar.

Ethics declarations

Conflict of Interest

Maja Antanasova and Peter Jevnikar declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Dental Restorative Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antanasova, M., Jevnikar, P. Bonding of Dental Ceramics to Titanium: Processing and Conditioning Aspects. Curr Oral Health Rep 3, 234–243 (2016). https://doi.org/10.1007/s40496-016-0107-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40496-016-0107-x

Keywords

Navigation