Probiotics and Prebiotics Having Broad Spectrum Anticancer Therapeutic Potential: Recent Trends and Future Perspectives

Abstract

A variety of microorganisms including bacteria, yeasts, and fungi are constituents of probiotics, quintessential as a part of human health as they produce a variety of molecules deliberated to be antibiotics. The changes in gut microbiota have been known to impose an impact on advancements and the beginning of chronic inflammatory pathways resulting in genetic alterations leading to dysplasia, clonal expansion, etc. Dysbiosis of the gut microbiome has been known to promote patient susceptibility as far as colonization by pathobionts is concerned. It has been observed that gut-microbial communities could influence immunomodulation, reduced inflammation along with gut homeostasis restoration. Probiotics, therefore, could be used as adjunctive therapy along with anticancer drugs reducing the level of inflammation. Moreover, probiotics have also been quite effective as a therapeutic option in the treatment/prevention of dental caries, periodontal diseases, urogenital infections, and gastrointestinal infections. Similarly, prebiotics are classified as non-digestible food ingredients which selectively stimulate the growth and metabolism of healthy bacteria in the intestinal tract, thereby improving the intestinal balance of an organism. The current review emphasizes upon the significant role of probiotics and prebiotics in influencing the microbiota which could further influence the immune system development and its perturbation as well as forming a symbiotic relationship with the host-maintaining balanced and efficient immune response further protecting from colonization by pathogens. The study further enhances our understanding about the key roles played by probiotics and prebiotics in the stimulation of the immune system, reducing the inflammatory responses and oxidative stress as well.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    •• Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, et al. Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods. 2019;8(3):92. https://doi.org/10.3390/foods8030092. This review discusses different aspects of prebiotics, including their crucial role in human wellbeing.

  2. 2.

    Ram G, Sharma V, Sheikh I, Sankhyan A, Aggarwal D, Sharma A. Anti-cancer potential of natural products: recent trends, scope and relevance. Lett Appl NanoBioSci. 2020;9(1):902–7. https://doi.org/10.33263/LIANBS91.902907.

    Article  Google Scholar 

  3. 3.

    Sharma V, Panwar A, Sharma AK. Molecular dynamic simulation study on chromones and flavonoids for the in silico designing of a potential ligand inhibiting mTOR pathway in breast cancer. Curr Pharmacol Rep. 2020;6:373–9.

    Article  Google Scholar 

  4. 4.

    • Sharma VR, Singh M, Kumar V, Yadav M, Sehrawat N, Sharma DK, et al. Microbiome dysbiosis in cancer: exploring therapeutic strategies to counter the disease. In: Seminars in Cancer Biology: Elsevier; 2020. https://doi.org/10.1016/j.semcancer.2020.07.006. The study envisages a wide-spectrum role of microbiota in maintaining host metabolism, immune homeostasis paving the way for an anticancer diagnostic and therapeutic solution that has the potential to counter the menace of anti-cancer drug resistance as well.

  5. 5.

    Sheikh I, Sharma V, Tuli HS, Aggarwal D, Sankhyan A, Vyas P et al. Cancer chemoprevention by flavonoids, dietary polyphenols and terpenoids. 2020; 11(1). https://doi.org/10.33263/BRIAC111.85028537.

  6. 6.

    Mendoza L. Potential effect of probiotics in the treatment of breast cancer. Oncol Rev. 2019;13(2). https://doi.org/10.4081/oncol.2019.422.

  7. 7.

    Motevaseli E, Dianatpour A, Ghafouri-Fard S. The role of probiotics in cancer treatment: emphasis on their in vivo and in vitro anti-metastatic effects. Int J Mol Cell Med. 2017;6(2):66. https://doi.org/10.22088/acadpub.BUMS.6.2.1.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Górska A, Przystupski D, Niemczura MJ, Kulbacka J. Probiotic bacteria: a promising tool in cancer prevention and therapy. Curr Microbiol. 2019;76:1–11. https://doi.org/10.1007/s00284-019-01679-8.

    CAS  Article  Google Scholar 

  9. 9.

    Nazir Y, Hussain SA, Abdul Hamid A, Song Y. Probiotics and their potential preventive and therapeutic role for cancer, high serum cholesterol, and allergic and HIV diseases. Biomed Res Int. 2018;29:3428437. https://doi.org/10.1155/2018/3428437.

    CAS  Article  Google Scholar 

  10. 10.

    VarRuchi Sharma DKS. Navnit Mishra, Anil K Sharma, Navneet Batra. New and potential therapies for the treatment of breast cancer: an update for oncologists. Curr Trends Biotechnol Chem Res. 2016;6(1):23–7.

    Google Scholar 

  11. 11.

    Kassayova M, Bobrov N, Strojný L, Kiskova T, Mikeš J, Demečková V, et al. Preventive effects of probiotic bacteria Lactobacillus plantarum and dietary fiber in chemically-induced mammary carcinogenesis. Anticancer Res. 2014;34(9):4969–75.

    PubMed  Google Scholar 

  12. 12.

    Mukta Raghav VS, Chaudhary M, Tuli HS, Saini AK, Anil K. Sharma The essence of PTEN: a broad-spectrum therapeutic target in cancer. Biointerface Res Appl Chem. 2021;11(2):9587–603. https://doi.org/10.33263/BRIAC112.95879603.

    Article  Google Scholar 

  13. 13.

    De Almeida CV, Lulli M, di Pilato V, et al. Differential responses of colorectal cancer cell lines to enterococcus faecalis' strains isolated from healthy donors and colorectal cancer patients. J Clin Med. 2019;8(3):388. https://doi.org/10.3390/jcm8030388.

    CAS  Article  PubMed Central  Google Scholar 

  14. 14.

    • Hassan Z, Mustafa S, Rahim RA, Isa NM. Anti-breast cancer effects of live, heat-killed and cytoplasmic fractions of Enterococcus faecalis and Staphylococcus hominis isolated from human breast milk. In Vitro Cell Dev Biol-Anim. 2016;52(3):337–48. https://doi.org/10.1007/s11626-015-9978-8.

    Article  PubMed  Google Scholar 

  15. 15.

    Parker R. Probiotics, the other half of the antibiotic story. Anim Nutr Health. 1974;29:4–8.

    Google Scholar 

  16. 16.

    AFRC RF. Probiotics in man and animals. J Appl Bacteriol. 1989;66(5):365–78.

    Article  Google Scholar 

  17. 17.

    Moriarty D. Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture. 1998;164(1-4):351–8.

    Article  Google Scholar 

  18. 18.

    •• Wang Y-B, Xu Z-R, Xia M-S. The effectiveness of commercial probiotics in northern white shrimp Penaeus vannamei ponds. Fish Sci. 2005;71(5):1036–41. https://doi.org/10.1111/j.1444-2906.2005.01061.x. The study revealed that the probiotics could improve the population density of beneficial bacterial flora, reduce concentrations of nitrogen and phosphorus, and increase yields of shrimp.

  19. 19.

    Gupta K, Stapleton AE, Hooton TM, Roberts PL, Fennell CL, Stamm WE. Inverse association of H2O2-producing lactobacilli and vaginal Escherichia coli colonization in women with recurrent urinary tract infections. J Infect Dis. 1998;178(2):446–50. https://doi.org/10.1086/515635.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Harzallah D, Belhadj H. Lactic acid bacteria as probiotics: characteristics, selection criteria and role in immunomodulation of human GI muccosal barrier. Lactic acid bacteria—R&D for food, health and livestock purposes InTech, Rijeka, Croatia. 2013. https://doi.org/10.5772/50732

  21. 21.

    Vlková E, Kalous L, Bunešová V, Rylková K, Světlíková R, Rada V. Occurrence of bifidobacteria and lactobacilli in digestive tract of some freshwater fishes. Biologia. 2012;67(2):411–6. https://doi.org/10.2478/s11756-012-0017-x.

    CAS  Article  Google Scholar 

  22. 22.

    Dong J, Teng G, Wei T, Gao W, Wang H. Methodological quality assessment of meta-analyses and systematic reviews of probiotics in inflammatory bowel disease and pouchitis. PloS One. 2016;11(12). https://doi.org/10.1371/journal.pone.0168785.

  23. 23.

    Ma EL, Choi YJ, Choi J, Pothoulakis C, Rhee SH, Im E. The anticancer effect of probiotic Bacillus polyfermenticus on human colon cancer cells is mediated through ErbB2 and ErbB3 inhibition. Int J Cancer. 2010;127(4):780–90. https://doi.org/10.1002/ijc.25011.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Nair V, Soraisham AS. Probiotics and prebiotics: role in prevention of nosocomial sepsis in preterm infants. Int J Pediatr. 2013;2013:1–8. https://doi.org/10.1155/2013/874726.

    Article  Google Scholar 

  25. 25.

    Chapman C, Gibson GR, Rowland I. In vitro evaluation of single-and multi-strain probiotics: Inter-species inhibition between probiotic strains, and inhibition of pathogens. Anaerobe. 2012;18(4):405–13. https://doi.org/10.1016/j.anaerobe.2012.05.004.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    • Reid G. Probiotics: definition, scope and mechanisms of action. Best Pract Res Clin Gastroenterol. 2016;30(1):17–25. https://doi.org/10.1016/j.bpg.2015.12.001. The study discuss the rationale for the definition, and the scope of the subject area and why alternatives emerge.

  27. 27.

    Mitropoulou G, Nedovic V, Goyal A, Kourkoutas Y. Immobilization technologies in probiotic food production. J Nutr Metab. 2013;2013:1–15. https://doi.org/10.1155/2013/716861.

    Article  Google Scholar 

  28. 28.

    Alander M, Satokari R, Korpela R, Saxelin M, Vilpponen-Salmela T, Mattila-Sandholm T, et al. Persistence of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosusGG, after oral consumption. Appl Environ Microbiol. 1999;65(1):351–4. https://doi.org/10.1128/AEM.65.1.351-354.1999.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Ouwehand AC, Salminen SJ. The health effects of cultured milk products with viable and non-viable bacteria. Int Dairy J. 1998;8(9):749–58.

    Article  Google Scholar 

  30. 30.

    Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506–14. https://doi.org/10.1038/nrgastro.2014.66.

    Article  PubMed  Google Scholar 

  31. 31.

    Schillinger U. Isolation and identification of lactobacilli from novel-type probiotic and mild yoghurts and their stability during refrigerated storage. Int J Food Microbiol. 1999;47(1-2):79–87. https://doi.org/10.1016/s0168-1605(99)00014-8.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Sanders ME. Probiotics: definition, sources, selection, and uses. Clin Infect Dis. 2008;46(Supplement_2):S58–61. https://doi.org/10.1086/523341.

    Article  PubMed  Google Scholar 

  33. 33.

    Merrifield DL, Dimitroglou A, Foey A, Davies SJ, Baker RT, Bøgwald J, et al. The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture. 2010;302(1-2):1–18. https://doi.org/10.1016/j.aquaculture.2010.02.007.

    Article  Google Scholar 

  34. 34.

    Burr G, Gatlin D III, Ricke S. Microbial ecology of the gastrointestinal tract of fish and the potential application of prebiotics and probiotics in finfish aquaculture. J World Aquacult Soc. 2005;36(4):425–36. https://doi.org/10.1111/j.1749-7345.2005.tb00390.x.

    Article  Google Scholar 

  35. 35.

    Wang Y-B, Li J-R, Lin J. Probiotics in aquaculture: challenges and outlook. Aquaculture. 2008;281(1-4):1–4. https://doi.org/10.1016/j.aquaculture.2008.06.002.

    Article  Google Scholar 

  36. 36.

    Kesarcodi-Watson A, Kaspar H, Lategan MJ, Gibson L. Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture. 2008;274(1):1–14. https://doi.org/10.1016/j.aquaculture.2007.11.019.

    Article  Google Scholar 

  37. 37.

    Sharma Anil Kumar SI, Gautami D, VarRuchi S. Oral squamous cell carcinoma (OSCC) in humans: etiological factors, diagnostic and therapeutic relevance. Res J Biotechnol. 2020;15(10):141–51.

    Google Scholar 

  38. 38.

    Suskovic J, Kos B, Beganović J, Leboš Pavunc A, Habjanič K, Matošić S. Antimicrobial activity–the most important property of probiotic and starter lactic acid bacteria. Food Technol Biotechnol. 2010;48(3):296–307.

    CAS  Google Scholar 

  39. 39.

    Oh Y, Osato M, Han X, Bennett G, Hong W. Folk yoghurt kills Helicobacter pylori. J Appl Microbiol. 2002;93(6):1083–8. https://doi.org/10.1046/j.1365-2672.2002.01779.x.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Kuo C-H, Wang SS, Lu C-Y, Hu H-M, Kuo F-C, Weng B-C, et al. Long-term use of probiotic-containing yogurts is a safe way to prevent Helicobacter pylori: based on a Mongolian gerbil's model. Biochem Res Int. 2013;2013:1–7. https://doi.org/10.1155/2013/594561.

    Article  Google Scholar 

  41. 41.

    Chen X, Liu XM, Tian F, Zhang Q, Zhang HP, Zhang H, et al. Antagonistic activities of lactobacilli against Helicobacter pylori growth and infection in human gastric epithelial cells. J Food Sci. 2012;77(1):M9–M14. https://doi.org/10.1111/j.1750-3841.2011.02498.x.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    • Makras L, Triantafyllou V, Fayol-Messaoudi D, Adriany T, Zoumpopoulou G, Tsakalidou E, et al. Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds. Res Microbiol. 2006;157(3):241–7. https://doi.org/10.1016/j.resmic.2005.09.002. Revealed about the aspects of lactic acid production and its significant inhibitory activity upon invasion of Salmonella into Caco-2/TC7 cells.

  43. 43.

    Verhoeven V, Renard N, Makar A, Van Royen P, Bogers J-P, Lardon F, et al. Probiotics enhance the clearance of human papillomavirus-related cervical lesions: a prospective controlled pilot study. Eur J Cancer Prev. 2013;22(1):46–51. https://doi.org/10.1097/CEJ.0b013e328355ed23.

    Article  PubMed  Google Scholar 

  44. 44.

    Chaikham P, Apichartsrangkoon A, Jirarattanarangsri W, Van de Wiele T. Influence of encapsulated probiotics combined with pressurized longan juice on colon microflora and their metabolic activities on the exposure to simulated dynamic gastrointestinal tract. Food Res Int. 2012;49(1):133–42. https://doi.org/10.1016/j.foodres.2012.07.033.

    CAS  Article  Google Scholar 

  45. 45.

    Li J, Sung CYJ, Lee N, Ni Y, Pihlajamäki J, Panagiotou G, et al. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc Natl Acad Sci. 2016;113(9):E1306–E15. https://doi.org/10.1073/pnas.1518189113.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Pérez-Burillo S, Mehta T, Pastoriza S, Kramer DL, Paliy O, Rufián-Henares JÁ. Potential probiotic salami with dietary fiber modulates antioxidant capacity, short chain fatty acid production and gut microbiota community structure. LWT. 2019;105:355–62. https://doi.org/10.1016/j.lwt.2019.02.006.

    CAS  Article  Google Scholar 

  47. 47.

    Requena T, Martínez-Cuesta MC, Peláez C. Diet and microbiota linked in health and disease. Food Funct. 2018;9(2):688–704. https://doi.org/10.1039/c7fo01820g.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Venegas DP, Marjorie K, Landskron G, González MJ, Quera R, Dijkstra G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10. https://doi.org/10.3389/fimmu.2019.00277.

  49. 49.

    Verspreet J, Damen B, Broekaert WF, Verbeke K, Delcour JA, Courtin CM. A critical look at prebiotics within the dietary fiber concept. Annu Rev Food Sci Technol. 2016;7:167–90. https://doi.org/10.1146/annurev-food-081315-032749.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    LeBlanc JG, Chain F, Martín R, Bermúdez-Humarán LG, Courau S, Langella P. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Factories. 2017;16(1):79. https://doi.org/10.1186/s12934-017-0691-z.

    CAS  Article  Google Scholar 

  51. 51.

    Fotiadis CI, Stoidis CN, Spyropoulos BG, Zografos ED. Role of probiotics, prebiotics and synbiotics in chemoprevention for colorectal cancer. World J Gastroenterol: WJG. 2008;14(42):6453–7. https://doi.org/10.3748/wjg.14.6453.

    Article  PubMed  Google Scholar 

  52. 52.

    de Albuquerque MAC, de LeBlanc AdM, LeBlanc JG, Bedani R. Lactic acid bacteria: a functional approach. 2020.

  53. 53.

    Ohkawara S, Furuya H, Nagashima K, Asanuma N, Hino T. Oral administration of butyrivibrio fibrisolvens, a butyrate-producing bacterium, decreases the formation of aberrant crypt foci in the colon and rectum of mice. J Nutr. 2005;135(12):2878–83. https://doi.org/10.1093/jn/135.12.2878.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Commane DM, Shortt CT, Silvi S, Cresci A, Hughes RM, Rowland IR. Effects of fermentation products of pro-and prebiotics on trans-epithelial electrical resistance in an in vitro model of the colon. Nutr Cancer. 2005;51(1):102–9. https://doi.org/10.1207/s15327914nc5101_14.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Ko JS, Yang HR, Chang JY, Seo JK. Lactobacillus plantarum inhibits epithelial barrier dysfunction and interleukin-8 secretion induced by tumor necrosis factor-α. World J Gastroenterol: WJG. 2007;13(13):1962–5. https://doi.org/10.3748/wjg.v13.i13.1962.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Ahrne S, Johansson Hagslatt M-L. Effect of lactobacilli on paracellular permeability in the gut. Nutrients. 2011;3(1):104–17. https://doi.org/10.3390/nu3010104.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    • Jones C, Badger SA, Regan M, Clements BW, Diamond T, Parks RW, et al. Modulation of gut barrier function in patients with obstructive jaundice using probiotic LP299v. Eur J Gastroenterol Hepatol. 2013;25(12):1424–30. https://doi.org/10.1097/MEG.0b013e328363e26e. This study aimed to determine the effect of LP229v on intestinal permeability and tumour necrosis factor (TNF) p55 receptor concentrations in patients with obstructive jaundice undergoing biliary drainage.

  58. 58.

    Bermudez-Brito M, Plaza-Díaz J, Munoz-Quezada S, Gomez-Llorente C, Gil A. Probiotic mechanisms of action. Ann Nutr Metab. 2012;61(2):160–74. https://doi.org/10.1159/000342079.

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    McIntosh GH, Royle PJ, Playne MJ. A probiotic strain of L. acidophilus reduces DMH-induced large intestinal tumors in male Sprague-Dawley rats. Nutr Cancer. 1999;35(2):153–9. https://doi.org/10.1207/S15327914NC352_9.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Yi L, Ma S, Ren D. Phytochemistry and bioactivity of Citrus flavonoids: a focus on antioxidant, anti-inflammatory, anticancer and cardiovascular protection activities. Phytochem Rev. 2017;16(3):479–511. https://doi.org/10.1007/s11101-017-9497-1.

    CAS  Article  Google Scholar 

  61. 61.

    Horie H, Zeisig M, Hirayama K, Midtvedt T, Möller L, Rafter J. Probiotic mixture decreases DNA adduct formation in colonic epithelium induced by the food mutagen 2-amino-9H-pyrido [2, 3-b] indole in a human-flora associated mouse model. Eur J Cancer Prev. 2003;12(2):101–7. https://doi.org/10.1097/00008469-200304000-00003.

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Oberreuther-Moschner DL, Jahreis G, Rechkemmer G, Pool-Zobel BL. Dietary intervention with the probiotics Lactobacillus acidophilus 145 and Bifidobacterium longum 913 modulates the potential of human faecal water to induce damage in HT29clone19A cells. Br J Nutr. 2004;91(6):925–32. https://doi.org/10.1079/BJN20041108.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Yeh S-L, Lin M-S, Chen H-L. Inhibitory effects of a soluble dietary fiber from Amorphophallus konjac on cytotoxicity and DNA damage induced by fecal water in Caco-2 cells. Planta Med. 2007;73(13):1384–8. https://doi.org/10.1055/s-2007-990228.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Kumar A, Singh NK, Sinha PR. Inhibition of 1, 2-dimethylhydrazine induced colon genotoxicity in rats by the administration of probiotic curd. Mol Biol Rep. 2010;37(3):1373–6. https://doi.org/10.1007/s11033-009-9519-1.

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Prisciandaro LD, Geier MS, Chua AE, Butler RN, Cummins AG, Sander GR, et al. Probiotic factors partially prevent changes to caspases 3 and 7 activation and transepithelial electrical resistance in a model of 5-fluorouracil-induced epithelial cell damage. Support Care Cancer. 2012;20(12):3205–10. https://doi.org/10.1007/s00520-012-1446-3.

    Article  PubMed  Google Scholar 

  66. 66.

    Sehrawat N, Yadav M, Singh M, Kumar V, Sharma VR, Sharma AK, editors. Probiotics in microbiome ecological balance providing a therapeutic window against cancer. Seminars in cancer biology; 2020: Elsevier. https://doi.org/10.1016/j.semcancer.2020.06.009.

  67. 67.

    Miquel C, Jacob S, Grandjouan S, Aime A, Viguier J, Sabourin J, et al. Frequent alteration of DNA damage signalling and repair pathways in human colorectal cancers with microsatellite instability. Oncogene. 2007;26(40):5919–26. https://doi.org/10.1038/sj.onc.1210419.

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Park E, Jeon G-I, Park J-S, Paik H-D. A probiotic strain of Bacillus polyfermenticus reduces DMH induced precancerous lesions in F344 male rat. Biol Pharm Bull. 2007;30(3):569–74. https://doi.org/10.1248/bpb.30.569.

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Delcenserie V, Martel D, Lamoureux M, Amiot J, Boutin Y, Roy D. Immunomodulatory effects of probiotics in the intestinal tract. Curr Issues Mol Biol. 2008;10(1/2):37.

    CAS  PubMed  Google Scholar 

  70. 70.

    Ivanov II, Honda K. Intestinal commensal microbes as immune modulators. Cell Host Microbe. 2012;12(4):496–508. https://doi.org/10.1016/j.chom.2012.09.009.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Chen Z-F, Ai L-Y, Wang J-L, Ren L-L, Yu Y-N, Xu J, et al. Probiotics Clostridium butyricum and Bacillus subtilis ameliorate intestinal tumorigenesis. Future Microbiol. 2015;10(9):1433–45. https://doi.org/10.2217/fmb.15.66.

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Hu J, Wang C, Ye L, Yang W, Huang H, Meng F, et al. Anti-tumour immune effect of oral administration of Lactobacillus plantarum to CT26 tumour-bearing mice. J Biosci. 2015;40(2):269–79. https://doi.org/10.1007/s12038-015-9518-4.

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995;125(6):1401–12. https://doi.org/10.1093/jn/125.6.1401.

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Hamasalim HJ. Synbiotic as feed additives relating to animal health and performance. Adv Microbiol. 2016;6(4):288–302.

    CAS  Article  Google Scholar 

  75. 75.

    Sanders ME, Lenoir-Wijnkoop I, Salminen S, Merenstein DJ, Gibson GR, Petschow BW, et al. Probiotics and prebiotics: prospects for public health and nutritional recommendations. Ann N Y Acad Sci. 2014;1309(1):19–29. https://doi.org/10.1111/nyas.12377.

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Kerry RG, Patra JK, Gouda S, Park Y, Shin H-S, Das G. Benefaction of probiotics for human health: a review. J Food Drug Anal. 2018;26(3):927–39. https://doi.org/10.1016/j.jfda.2018.01.002.

    CAS  Article  Google Scholar 

  77. 77.

    Bongaerts GP, Severijnen RS. A reassessment of the PROPATRIA study and its implications for probiotic therapy. Nat Biotechnol. 2016;34(1):55–63. https://doi.org/10.1038/nbt.3436.

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Gupta V, Garg R. Probiotics. Indian J Med Microbiol. 2009;27(3):202–9. https://doi.org/10.4103/0255-0857.53201.

    CAS  Article  PubMed  Google Scholar 

  79. 79.

    Pokusaeva K, Fitzgerald GF, van Sinderen D. Carbohydrate metabolism in Bifidobacteria. Genes Nutr. 2011;6(3):285–306. https://doi.org/10.1007/s12263-010-0206-6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr. 2010;104(S2):S1–S63. https://doi.org/10.1017/S0007114510003363.

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Kolida S, Tuohy K, Gibson GR. Prebiotic effects of inulin and oligofructose. Br J Nutr. 2002;87(S2):S193–S7. https://doi.org/10.1079/BJNBJN/2002537.

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    De Vrese M. Schrezenmeir. Probiotics, prebiotics, and synbiotics. Food biotechnology. Springer; 2008. p. 1–66. https://doi.org/10.1007/10_2008_097.

  83. 83.

    Simova E, Beshkova D, Dimitrov ZP. Characterization and antimicrobial spectrum of bacteriocins produced by lactic acid bacteria isolated from traditional Bulgarian dairy products. J Appl Microbiol. 2009;106(2):692–701. https://doi.org/10.1111/j.1365-2672.2008.04052.x.

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    Kareem KY, Ling FH, Chwen LT, Foong OM, Asmara SA. Inhibitory activity of postbiotic produced by strains of Lactobacillus plantarum using reconstituted media supplemented with inulin. Gut Pathogens. 2014;6(1):23. https://doi.org/10.1186/1757-4749-6-23.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Kang J-H, Yun S-I, Park M-H, Park J-H, Jeong S-Y, Park H-O. Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PloS One. 2013;8(1). https://doi.org/10.1371/journal.pone.0054617.

  86. 86.

    Song S, Lee S-J, Park D-J, Oh S, Lim K-T. The anti-allergic activity of Lactobacillus plantarum L67 and its application to yogurt. J Dairy Sci. 2016;99(12):9372–82. https://doi.org/10.3168/jds.2016-11809.

    CAS  Article  PubMed  Google Scholar 

  87. 87.

    Waigankar SS, Patel V. Role of probiotics in urogenital healthcare. J Mid-Life Health. 2011;2(1):5–10.

    Article  Google Scholar 

  88. 88.

    Folkman J. Angiogenesis. Annu Rev Med. 2006;57:1–18.

    CAS  Article  Google Scholar 

  89. 89.

    Sharma V, Sankhyan A, Varshney A, Choudhary R, Sharma AK. Current paradigms to explore the gut microbiota linkage to neurological disorders. Neurology. 2020;8(1):68–79.

    Google Scholar 

  90. 90.

    Le Barz M, Anhê FF, Varin TV, Desjardins Y, Levy E, Roy D, et al. Probiotics as complementary treatment for metabolic disorders. Diabetes Metab J. 2015;39(4):291–303. https://doi.org/10.4093/dmj.2015.39.4.291.

    Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Kobyliak N, Conte C, Cammarota G, Haley AP, Styriak I, Gaspar L, et al. Probiotics in prevention and treatment of obesity: a critical view. Nutr Metab. 2016;13(1):14. https://doi.org/10.1186/s12986-016-0067-0.

    CAS  Article  Google Scholar 

  92. 92.

    Ljungberg M, Korpela R, Ilonen J, Ludvigsson J, Vaarala O. Probiotics for the prevention of beta cell autoimmunity in children at genetic risk of type 1 diabetes—the PRODIA study. Ann N Y Acad Sci. 2006;1079(1):360–4. https://doi.org/10.1196/annals.1375.055.

    Article  PubMed  Google Scholar 

  93. 93.

    Barrett E, Ross R, O'toole P, Fitzgerald G, Stanton C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol. 2012;113(2):411–7. https://doi.org/10.1111/j.1365-2672.2012.05344.x.

    CAS  Article  PubMed  Google Scholar 

  94. 94.

    Otake A, Chammas R, Zatz R. Câncer: novos alvos para tratamento. Ciencia Hoje. 2006;38(223):28.

    Google Scholar 

  95. 95.

    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    CAS  Article  PubMed  Google Scholar 

  96. 96.

    Anand P, Kunnumakara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 2008;25(9):2097–116. https://doi.org/10.1007/s11095-008-9661-9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. 97.

    McGuire S. World cancer report 2014. Geneva, Switzerland: World Health Organization, international agency for research on cancer, WHO Press, 2015. Oxford University Press; 2016.

  98. 98.

    Biasco G, Paganelli G, Brandi G, Brillanti S, Lami F. Effect of Lactobacillus acidophilus and Bifidobacterium bifidum on rectal cell kinetics and fecal pH. Italian J Gastroenterol. 1991;23(3).

  99. 99.

    Lidbeck A, Allinger UG, Orrhage K, Ottova L, Brismar B, Gustafsson J-Å, et al. Impact of Lactobacillus acidophilus supplements on the faecal microflora and soluble faecal bile acids in colon cancer patients. Microb Ecol Health Dis. 1991;4(2):81–8. https://doi.org/10.3109/08910609109140267.

    Article  Google Scholar 

  100. 100.

    Le Leu RK, Brown IL, Hu Y, Bird AR, Jackson M, Esterman A, et al. A synbiotic combination of resistant starch and Bifidobacterium lactis facilitates apoptotic deletion of carcinogen-damaged cells in rat colon. J Nutr. 2005;135(5):996–1001. https://doi.org/10.1093/jn/135.5.996.

    Article  PubMed  Google Scholar 

  101. 101.

    Pool-Zobel BL. Inulin-type fructans and reduction in colon cancer risk: review of experimental and human data. Br J Nutr. 2005;93(S1):S73–90. https://doi.org/10.1079/bjn20041349.

    CAS  Article  PubMed  Google Scholar 

  102. 102.

    Davoodi H, Esmaeili S, Mortazavian A. Effects of milk and milk products consumption on cancer: a review. Compr Rev Food Sci Food Saf. 2013;12(3):249–64. https://doi.org/10.1111/1541-4337.12011.

    CAS  Article  Google Scholar 

  103. 103.

    Dasari S, Kathera C, Janardhan A, Kumar AP, Viswanath B. Surfacing role of probiotics in cancer prophylaxis and therapy: a systematic review. Clin Nutr. 2017;36(6):1465–72. https://doi.org/10.1016/j.clnu.2016.11.017.

    Article  PubMed  Google Scholar 

  104. 104.

    Ruchi Sharma V, Kumar Gupta G, Sharma KA, Batra N, Sharma KD, Joshi A, et al. PI3K/Akt/mTOR intracellular pathway and breast cancer: factors, mechanism and regulation. Curr Pharm Des. 2017;23(11):1633–8. https://doi.org/10.2174/1381612823666161116125218.

    CAS  Article  Google Scholar 

  105. 105.

    Sharma AK, Sharma VR, Gupta GK, Ashraf GM, Kamal MA. Advanced glycation end products (AGEs), glutathione and breast cancer: factors, mechanism and therapeutic interventions. Curr Drug Metab. 2019;20(1):65–71. https://doi.org/10.2174/1389200219666180912104342.

    CAS  Article  PubMed  Google Scholar 

  106. 106.

    Sharma V, Sharma AK, Punj V, Priya P, editors. Recent nanotechnological interventions targeting PI3K/Akt/mTOR pathway: a focus on breast cancer. Semin Cancer Biol. 2019; https://doi.org/10.1016/j.semcancer.2019.08.005.

  107. 107.

    Jan G, Belzacq A, Haouzi D, Rouault A, Metivier D, Kroemer G, et al. Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ. 2002;9(2):179–88. https://doi.org/10.1038/sj.cdd.4400935.

    CAS  Article  PubMed  Google Scholar 

  108. 108.

    Varruchi Sharma NB, Sharma AK. In-silico designed and optimized lead inhibiting breast cancer mtor frb domain substrate recruitment mechanism. IN Patent 201,811,029,632; 2018.

  109. 109.

    McBain A, Macfarlane G. Modulation of genotoxic enzyme activities by non-digestible oligosaccharide metabolism in in-vitro human gut bacterial ecosystems. J Med Microbiol. 2001;50(9):833–42. https://doi.org/10.1099/0022-1317-50-9-833.

    CAS  Article  PubMed  Google Scholar 

  110. 110.

    Burns A, Rowland I. Anti-carcinogenicity of probiotics and prebiotics. Curr Issues Intest Microbiol. 2000;1(1):13–24.

    CAS  PubMed  Google Scholar 

  111. 111.

    Silvi S, Rumney C, Cresci A, Rowland I. Resistant starch modifies gut microflora and microbial metabolism in human flora-associated rats inoculated with faeces from Italian and UK donors. J Appl Microbiol. 1999;86(3):521–30. https://doi.org/10.1046/j.1365-2672.1999.00696.x.

    CAS  Article  PubMed  Google Scholar 

  112. 112.

    Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001;81(3):1031–64. https://doi.org/10.1152/physrev.2001.81.3.1031.

    CAS  Article  PubMed  Google Scholar 

  113. 113.

    Weng M, Walker WA. Bacterial colonization, probiotics, and clinical disease. J Pediatr. 2006;149(5):S107–S14. https://doi.org/10.1016/j.jpeds.2006.06.061.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge Maharishi Markandeshwar (Deemed to be University) Mullana (Ambala) Haryana, India for providing the requisite platform to pursue this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anil K. Sharma.

Ethics declarations

Conflict of Interest

None

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Microbiome

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Sharma, N., Sheikh, I. et al. Probiotics and Prebiotics Having Broad Spectrum Anticancer Therapeutic Potential: Recent Trends and Future Perspectives. Curr Pharmacol Rep (2021). https://doi.org/10.1007/s40495-021-00252-x

Download citation

Keywords

  • Probiotics
  • Prebiotics
  • Gut microbiota
  • Immunomodulation
  • Anticancer
  • Therapeutic