Overview and Practical Application of Coagulation Assays in Managing Anticoagulation with Direct Oral Anticoagulants (DOACs)


Purpose of Review

The introduction of newer anticoagulants requires clinicians to fully appreciate, interpret, and correctly apply the use of coagulation assays, such as the prothrombin time (PT), activated partial thromboplastin time (APTT), and anti-factor Xa assays. For oral vitamin K antagonists, the international normalized ratio (INR) is a predictor of anticoagulation intensity. However, for direct oral anticoagulants (DOACs), the PT or INR and APTT are unable to quantify the level of anticoagulation intensity as there is a poor correlation between plasma concentration of DOAC with these routine coagulation assays and that significant anticoagulant effect may still be present despite normal or near normal results for these routine assays.

Recent Findings

In the USA, there are 5 DOACs available including dabigatran, a direct thrombin inhibitor and 4 direct factor Xa inhibitors (FXaI), each with varying indications, doses, pharmacodynamic, and pharmacokinetic characteristics. A thorough understanding of these properties aids in the management of the periprocedural or bleeding patient.


In this first section of this manuscript, we will review the laboratory tests that are commonly performed for assessing a patient’s coagulation status with known DOAC exposure. The second section will describe 3 real-world challenging case studies in DOAC-treated patients, with a focus on presenting clinical queries, interpretation of baseline laboratory tests with interpretations, followed by the case discussion to combine interpretation of appropriate laboratory tests with clinical patient considerations in an effort to guide clinical decision-making.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Douxfils J, Gosselin RC. Laboratory assessment of direct oral anticoagulants. Semin Thromb Hemost. 2017;43(3):277–90.

    CAS  PubMed  Google Scholar 

  2. 2.

    Siriez R, Evrard J, Dogné JM, Pochet L, Gheldof D, Chatelain B, et al. Betrixaban: impact on routine and specific coagulation assays—a practical laboratory guide. Thromb Haemost. 2018;118(7):1203–14.

    PubMed  Google Scholar 

  3. 3.

    Dirckx JH, Armand J. Quick: pioneer and prophet of coagulation research. Ann Intern Med. 1980;92(4):553–8.

    CAS  PubMed  Google Scholar 

  4. 4.

    Aggeler PM, Howard J, et al. Standardization of the Quick prothrombin test; with reference to the statistical significance of variations in the prothrombin concentration with use of a stable thromboplastin of high potency. Blood. 1946;1:220–33.

    CAS  PubMed  Google Scholar 

  5. 5.

    Quick AJ, Hussey CV. Influence of concentration of thromboplastin on prothrombin time of human and dog plasma. Proc Soc Exp Biol Med. 1951;76(4):732–4.

    CAS  PubMed  Google Scholar 

  6. 6.

    Smith SA, Morrissey JH. Thromboplastin composition affects the sensitivity of prothrombin time (PT) clotting tests to direct factor Xa inhibitors. Blood. 2007;110. Abstract:928.

    Google Scholar 

  7. 7.

    Smith SA, Comp PC, Morrissey JH. Phospholipid composition controls thromboplastin sensitivity to individual clotting factors. J Thromb Haemost. 2006;4(4):820–7.

    CAS  PubMed  Google Scholar 

  8. 8.

    Loeliger EA. ICSH/ICTH recommendations for reporting prothrombin time in oral anticoagulant control. Acta Haemat. 1984;72:405–7.

    CAS  PubMed  Google Scholar 

  9. 9.

    Loeliger EA. ICSH/ICTH Recommendations for reporting prothrombin time in oral anticoagulant control. Acta Haemat. 1984;72:405–7.

    CAS  PubMed  Google Scholar 

  10. 10.

    Kirkwood TBL. Calibration of reference thromboplastins and standardisation of the prothrombin time ratio. Thromb. Haemostasis. 1983;49:238–44.

    CAS  Google Scholar 

  11. 11.

    Favaloro EJ, McVicker W, Lay M, Ahuja M, Zhang Y, Hamdam S, et al. Harmonizing the international normalized ratio (INR): standardization of methods and use of novel strategies to reduce interlaboratory variation and bias. Am J Clin Pathol. 2016;145(2):191–202.

    PubMed  Google Scholar 

  12. 12.

    Aggeler PM, Howard J, et al. Standardization of the Quick prothrombin test; with reference to the statistical significance of variations in the prothrombin concentration with use of a stable thromboplastin of high potency. Blood. 1946;1:220–33.

    CAS  PubMed  Google Scholar 

  13. 13.

    CLSI. One Stage PRothrombin Time (PT) Test and Activated Partial Thromboplastin Time (APTT) Test. Approved Guideline. H47-A2. Wayne, PA. Clinical and Laboratory Standards Institute; 2008.

  14. 14.

    Brinkhous KM, Langdell RD, Penick GD, Graham JB, Wagner RH. Newer approaches to the study of hemophilia and hemophilioid states. J Am Med Assoc. 1954;154(6):481–6.

    CAS  PubMed  Google Scholar 

  15. 15.

    Proctor RR, Rapaport SI. The partial thromboplastin time with kaolin. A simple screening test for first stage plasma clotting factor deficiencies. Am J Clin Pathol. 1961;36:212–9.

    CAS  PubMed  Google Scholar 

  16. 16.

    Kitchen S, Cartwright I, Woods TA, Jennings I, Preston FE. Lipid composition of seven APTT reagents in relation to heparin sensitivity. Br J Haematol. 1999;106(3):801–8.

    CAS  PubMed  Google Scholar 

  17. 17.

    Mikaelsson M, Oswaldsson U, Sandberg H. Influence of phospholipids on the assessment of factor VIII activity. Haemophilia. 1998;4(4):646–50.

    CAS  PubMed  Google Scholar 

  18. 18.

    Denis-Magdelaine A, Flahault A, Verdy E. Sensitivity of sixteen APTT reagents for the presence of lupus anticoagulants. Haemostasis. 1995;25(3):98–105.

    CAS  PubMed  Google Scholar 

  19. 19.

    Cuker A. Unfractionated heparin for the treatment of venous thromboembolism: best practices and areas of uncertainty. Semin Thromb Hemost. 2012;38(6):593–9.

    CAS  PubMed  Google Scholar 

  20. 20.

    Gosselin RC, Marlar RA. Preanalytical variables in coagulation testing: setting the stage for accurate results. Semin Thromb Hemost. 2019;45(5):433–48. https://doi.org/10.1055/s-0039-1692700.

    Article  PubMed  Google Scholar 

  21. 21.

    Chitolie A, Mackie IJ, Grant D, Hamilton JL, Machin SM. Inaccuracy of the ‘derived’ fibrinogen measurement. Blood Coagul Fibrinolysis. 1994;5(6):955–7.

    CAS  PubMed  Google Scholar 

  22. 22.

    Dager WE, Gosselin RC, Kitchen S, Dwyre D. Dabigatran effects on the international normalized ratio, activated partial thromboplastin time, thrombin time, and fibrinogen: a multicenter, in vitro study. Ann Pharmacother. 2012;46(12):1627–36.

    PubMed  Google Scholar 

  23. 23.

    Douxfils J, Mullier F, Robert S, Chatelain C, Chatelain B, Dogné JM. Impact of dabigatran on a large panel of routine or specific coagulation assays. Laboratory recommendations for monitoring of dabigatran etexilate. Thromb Haemost. 2012;107(5):985–97.

    CAS  PubMed  Google Scholar 

  24. 24.

    van Blerk M, Bailleul E, Chatelain B, Demulder A, Devreese K, Douxfils J, et al. Influence of dabigatran and rivaroxaban on routine coagulation assays. A nationwide Belgian survey. Thromb Haemost. 2015;113(1):154–64.

    PubMed  Google Scholar 

  25. 25.

    Van Cott EM, Roberts AJ, Dager WE. Laboratory monitoring of parenteral direct thrombin inhibitors. Semin Thromb Hemost. 2017;43(3):270–6.

    PubMed  Google Scholar 

  26. 26.

    Gosselin RC, Gosselin R, Douxfils J, Adcock D. Clinical pearls: laboratory assessments of direct oral anticoagulants (DOACS). Hamostaseologie. 2017;37(4). https://doi.org/10.5482/HAMO-17-01-0002.

  27. 27.

    Love JE, Ferrell C, Chandler WL. Monitoring direct thrombin inhibitors with a plasma diluted thrombin time. Thromb Haemost. 2007;98(1):234–42.

    CAS  PubMed  Google Scholar 

  28. 28.

    Bertina RM, van der Marel-van Nieuwkoop W, Dubbeldam J, Boekhout-Mussert RJ, Veltkamp JJ. New method for the rapid detection of vitamin k deficiency. Clin Chim Acta. 1980;105(1):93–8.

    CAS  PubMed  Google Scholar 

  29. 29.

    Triplett DA, Stocker KF, Unger GA, Barna LK. The Textarin/Ecarin ratio: a confirmatory test for lupus anticoagulants. Thromb Haemost. 1993;70(6):925–31.

    CAS  PubMed  Google Scholar 

  30. 30.

    Douxfils J, Lessire S, Dincq AS, Hjemdahl P, Rönquist-Nii Y, Pohanka A, et al. Estimation of dabigatran plasma concentrations in the perioperative setting. An ex vivo study using dedicated coagulation assays. Thromb Haemost. 2015;113(4):862–9.

    PubMed  Google Scholar 

  31. 31.

    Gosselin RC, Douxfils J. Measuring direct oral anticoagulants. Methods Mol Biol. 1646;2017:217–25.

    Google Scholar 

  32. 32.

    Stocker K, Fischer H, Brogli M. Chromogenic assay for the prothrombin activator ecarin from the venom of the saw-scaled viper (Echis carinatus). Toxicon. 1986;24:81–9.

    CAS  PubMed  Google Scholar 

  33. 33.

    Spannagl M, Bichler J, Birg A, Lill H, Schramm W. Development of a chromogenic substrate assay for the determination of hirudin in plasma. Blood Coagul Fibrinolysis. 1991;2:121–7.

    CAS  PubMed  Google Scholar 

  34. 34.

    Lange U, Nowak G, Bucha E. Ecarin chromogenic assay--a new method for quantitative determination of direct thrombin inhibitors like hirudin. Pathophysiol Haemost Thromb. 2003. 2004;33(4):184–91.

    Google Scholar 

  35. 35.

    Douxfils J, Ageno W, Samama CM, Lessire S, Ten Cate H, Verhamme P, et al. Laboratory testing in patients treated with direct oral anticoagulants: a practical guide for clinicians. J Thromb Haemost. 2018;16(2):209–19.

    CAS  PubMed  Google Scholar 

  36. 36.

    Gosselin RC, Adcock DM, Bates SM, Douxfils J, Favaloro EJ, Gouin-Thibault I, et al. International Council for Standardization in Haematology (ICSH) recommendations for laboratory measurement of direct oral anticoagulants. Thromb Haemost. 2018;118(3):437–50.

    PubMed  Google Scholar 

  37. 37.

    Gosselin RC, Adcock DM. The laboratory’s 2015 perspective on direct oral anticoagulant testing. J Thromb Haemost. 2016;14(5):886–93. https://doi.org/10.1111/jth.13266 Erratum in: J Thromb Haemost. 2019;17(4):698.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Hemker HC, Al Dieri R, De Smedt E, Béguin S. Thrombin generation, a function test of the haemostatic-thrombotic system. Thromb Haemost. 2006;96(5):553–61.

    CAS  PubMed  Google Scholar 

  39. 39.

    Douxfils J, Morimont L, Bouvy C, Saint-Hubert M, Devalet B, Devroye C, et al. Assessment of the analytical performances and sample stability on ST Genesia system using the STG-DrugScreen application. J Thromb Haemost. 2019;17(8):1273–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Adcock DM, Gosselin RC. The danger of relying on the APTT and PT in patients on DOAC therapy, a potential patient safety issue. Int J Lab Hematol. 2017;39(Suppl 1):37–40.

    PubMed  Google Scholar 

  41. 41.

    Samuelson BT, Cuker A. Measurement and reversal of the direct oral anticoagulants. Blood Rev. 2017;31(1):77–84.

    CAS  PubMed  Google Scholar 

  42. 42.

    Baglin T, Keeling D, Kitchen S. British Committee for Standards in Haematology. Effects on routine coagulation screens and assessment of anticoagulant intensity in patients taking oral dabigatran or rivaroxaban: guidance from the British Committee for Standards in Haematology. Br J Haematol. 2012;159:427–9.

    CAS  PubMed  Google Scholar 

  43. 43.

    Baglin T, Hillarp A, Tripodi A, Elalamy I, Buller H, Ageno W. Measuring oral direct inhibitors (ODIs) of thrombin and factor Xa: a recommendation from the subcommittee on control of anticoagulation of the scientific and standardisation Committee of the International Society on thrombosis and Haemostasis. J Thromb Haemost. 2013;11:756–60.

    CAS  Google Scholar 

  44. 44.

    Douxfils J, Mullier F, Loosen C, Chatelain C, Chatelain B, Dogné JM. Assessment of the impact of rivaroxaban on coagulation assays: laboratory recommendations for the monitoring of rivaroxaban and review of the literature. Thromb Res. 2012;130(6):956–66.

    CAS  PubMed  Google Scholar 

  45. 45.

    Douxfils J, Chatelain C, Chatelain B, Dogné JM, Mullier F. Impact of apixaban on routine and specific coagulation assays: a practical laboratory guide. Thromb Haemost. 2013;110(2):283–94.

    CAS  PubMed  Google Scholar 

  46. 46.

    Francart SJ, Hawes EM, Deal AM, Adcock DM, Gosselin R, Jeanneret C, et al. Performance of coagulation tests in patients on therapeutic doses of rivaroxaban. A cross-sectional pharmacodynamic study based on peak and trough plasma levels. Thromb Haemost. 2014;111(6):1133–40.

    CAS  PubMed  Google Scholar 

  47. 47.

    Hawes EM, Deal AM, Funk-Adcock D, Gosselin R, Jeanneret C, Cook AM, et al. Performance of coagulation tests in patients on therapeutic doses of dabigatran: a cross-sectional pharmacodynamic study based on peak and trough plasma levels. J Thromb Haemost. 2013;11(8):1493–502.

    CAS  PubMed  Google Scholar 

  48. 48.

    Cuker A, Husseinzadeh H. Laboratory measurement of the anticoagulant activity of edoxaban: a systematic review. J Thromb Thrombolysis. 2015;39(3):288–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Gosselin RC, Adcock D, Hawes EM, Francart SJ, Grant RP, Moll S. Evaluating the use of commercial drug-specific calibrators for determining PT and APTT reagent sensitivity to dabigatran and rivaroxaban. Thromb Haemost. 2015;113(1):77–84.

    CAS  PubMed  Google Scholar 

  50. 50.

    Lim MS, Chapman K, Swanepoel P, Enjeti AK. Sensitivity of routine coagulation assays to direct oral anticoagulants: patient samples versus commercial drug-specific calibrators. Pathology. 2016;48(7):712–9.

    CAS  PubMed  Google Scholar 

  51. 51.

    Olaiya A, Lurie B, Watt B, McDonald L, Greaves M, Watson HG. An observational study of the direct oral anticoagulant awareness indicating inadequate recognition with potential for patient harm. J Thromb Haemost. 2016;14:987–90.

    CAS  PubMed  Google Scholar 

  52. 52.

    College of American Pathologists (CAP). Surveys and Anatomic Pathology Education Programs. Coagulation Special Testing Heparin Assay CGS4-A Participant Summary 2019. Northfield, IL.

  53. 53.

    Billoir P, Barbay V, Joly LM, Fresel M, Chrétien MH, Le Cam Duchez V. Anti-Xa Oral anticoagulant plasma concentration assay in real life: Rivaroxaban and Apixaban quantification in emergency with LMWH calibrator. Ann Pharmacother. 2019;53(4):341–7.

    CAS  PubMed  Google Scholar 

  54. 54.

    Gosselin RC, Francart SJ, Hawes EM, Moll S, Dager WE, Adcock DM. Heparin-calibrated chromogenic anti-Xa activity measurements in patients receiving rivaroxaban: can this test be used to quantify drug level? Ann Pharmacother. 2015;49(7):777–83.

    CAS  PubMed  Google Scholar 

  55. 55.

    Siriez R, Evrard J, Dogné JM, Pochet L, Bouvy C, Lessire S, et al. Development of new methodologies for the chromogenic estimation of betrixaban concentrations in plasma. Int J Lab Hematol. 2019;41(2):250–61.

    PubMed  Google Scholar 

  56. 56.

    Mani H, Rohde G, Stratmann G, et al. Accurate determination of rivaroxaban levels requires different calibrator sets but not addition of antithrombin. Thromb Haemost. 2012;108(01):191–8.

    CAS  PubMed  Google Scholar 

  57. 57.

    Gosselin RC, Adcock Funk DM, Taylor JM, et al. Comparison of anti-Xa and dilute Russell viper venom time assays in quantifying drug levels in patients on therapeutic doses of rivaroxaban. Arch Pathol Lab Med. 2014;138(12):1680–4.

    PubMed  Google Scholar 

  58. 58.

    Adcock DM, Gosselin R. Direct oral anticoagulants (DOACs) in the laboratory: 2015 review. Thromb Res. 2015;136(1):7–12.

    CAS  PubMed  Google Scholar 

  59. 59.

    Gosselin R, Grant RP, Adcock DM. Comparison of the effect of the anti-Xa direct oral anticoagulants apixaban, edoxaban, and rivaroxaban on coagulation assays. Int J Lab Hematol. 2016;38(5):505–13.

    CAS  PubMed  Google Scholar 

  60. 60.

    Beyer J, Trujillo T, Fisher S, Ko A, Lind SE, Kiser TH. Evaluation of a heparin-calibrated antifactor Xa assay for measuring the anticoagulant effect of oral direct Xa inhibitors. Clin Appl Thromb Hemost. 2016;22(5):423–8.

    CAS  PubMed  Google Scholar 

  61. 61.

    Sabor L, Raphaël M, Dogné JM, Mullier F, Douxfils J. Heparin-calibrated chromogenic anti-Xa assays are not suitable to assess the presence of significant direct factor Xa inhibitors levels. Thromb Res. 2017;156:36–8.

    CAS  PubMed  Google Scholar 

  62. 62.

    Praxbind (idarucizumab) presribing information. Boehringer Ingelheim International GmbH. 2018.

  63. 63.

    Siegal DM, Curnutte JT, Connolly SJ, Lu G, Conley PB, Wiens BL, et al. Andexanet Alfa for the reversal of factor Xa inhibitor activity. N Engl J Med. 2015;373(25):2413–24.

    CAS  Google Scholar 

  64. 64.

    Limitations of Commercial Anti-Factor Xa Activity Assays in the Presence of Andexanet Alfa. Portola Pharmaceuticals memo MP-AnXa-US-0160. 2019.

  65. 65.

    Food and Drug Administration Summary Basis for Regulatory Action. ANDEXXA / coagulation factor Xa (recombinant), inactivated-zhzo. 2018. https://www.fda.gov/media/113954/download. Last accessed 03/08/2020.

  66. 66.

    Douxfils J, Chatelain B, Chatelain C, Dogné JM, Mullier F. Edoxaban: impact on routine and specific coagulation assays. A practical laboratory guide. Thromb Haemost. 2016;115(2):368–81.

    PubMed  Google Scholar 

  67. 67.

    Bloemen S, Zwaveling S, Douxfils J, Roest M, Kremers R, Mullier F. The anticoagulant effect of dabigatran is reflected in the lag time and time-to-peak, but not in the endogenous thrombin potential or peak, of thrombin generation. Thromb Res. 2018;171:160–6.

    CAS  PubMed  Google Scholar 

  68. 68.

    Bloemen S, Zwaveling S, Mullier F, Douxfils J. Concomitant assessment of rivaroxaban concentration and its impact on thrombin generation. Thromb Res. 2019;184:8–15.

    CAS  PubMed  Google Scholar 

  69. 69.

    Marlu R, Hodaj E, Paris A, Albaladejo P, Cracowski JL, Pernod G. Effect of non-specific reversal agents on anticoagulant activity of dabigatran and rivaroxaban: a randomised crossover ex vivo study in healthy volunteers [published correction appears in Thromb Haemost. 2013 Jan;109(1):169]. Thromb Haemost. 2012;108(2):217–24.

    CAS  PubMed  Google Scholar 

  70. 70.

    Rigano J, Ng C, Nandurkar H, Ho P. Thrombin generation estimates the anticoagulation effect of direct oral anticoagulants with significant interindividual variability observed. Blood Coagul Fibrinolysis. 2018;29(2):148–54.

    CAS  PubMed  Google Scholar 

  71. 71.

    Dale B, Eikelboom JW, Weitz JI, Young E, Paikin JS, Coppens M, et al. Dabigatran attenuates thrombin generation to a lesser extent than warfarin: could this explain their differential effects on intracranial hemorrhage and myocardial infarction? J Thromb Thrombolysis. 2013;35(2):295–301.

    CAS  PubMed  Google Scholar 

  72. 72.

    Bloemen S, Hemker HC, Al DR. Large inter-individual variation of the pharmacodynamic effect of anticoagulant drugs on thrombin generation. Haematologica. 2013;98(4):549–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Sennesael AL, Larock AS, Douxfils J, Elens L, Stillemans G, Wiesen M, et al. Rivaroxaban plasma levels in patients admitted for bleeding events: insights from a prospective study. Thromb J. 2018;16:28.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Honickel M, Braunschweig T, Rossaint R, Stoppe C, Ten Cate H, Grottke O. Reversing Dabigatran anticoagulation with Prothrombin complex concentrate versus Idarucizumab as part of multimodal hemostatic intervention in an animal model of polytrauma. Anesthesiology. 2017;127(5):852–61.

    CAS  PubMed  Google Scholar 

  75. 75.

    Neal MD, Levy JH. Precision correction of coagulopathy or Prothrombin complex concentrates?: reversal options for Dabigatran following trauma. Anesthesiology. 2017;127(5):744–6.

    PubMed  Google Scholar 

  76. 76.

    Siddiqui F, Tafur A, Ramacciotti LS, et al. Reversal of factor Xa inhibitors by Andexanet Alfa may increase thrombogenesis compared to pretreatment values. Clin Appl Thromb Hemost. 2019;25:1–7.

    Google Scholar 

  77. 77.

    Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. 2018 guidelines for the Early Management of Patients With Acute Ischemic Stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2018;49(3):e46–e110.

    PubMed  Google Scholar 

  78. 78.

    Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 guidelines for the Early Management of Acute Ischemic Stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2019;50(12):e344–418 Erratum in: Stroke. 2019;50(12):e440-e441.

    PubMed  Google Scholar 

  79. 79.

    Pernod G, Albaladejo P, Godier A, Samama CM, Susen S, Gruel Y, et al. Working group on perioperative haemostasis. Management of major bleeding complications and emergency surgery in patients on long-term treatment with direct oral anticoagulants, thrombin or factor-Xa inhibitors: proposals of the working group on perioperative haemostasis (GIHP) - March 2013. Arch Cardiovasc Dis. 2013;106(6–7):382–93.

    PubMed  Google Scholar 

  80. 80.

    Tripodi A. To measure or not to measure direct oral anticoagulants before surgery or invasive procedures: reply. J Thromb Haemost. 2016;14:2559–61.

    CAS  PubMed  Google Scholar 

  81. 81.

    Spyropoulos AC, Al-Badri A, Sherwood MW, Douketis JD. To measure or not to measure direct oral anticoagulants before surgery or invasive procedures: comment. J Thromb Haemost. 2016;14(12):2556–9.

    CAS  PubMed  Google Scholar 

  82. 82.

    Levy JH, Ageno W, Chan NC, Crowther M, Verhamme P, Weitz JI, et al. When and how to use antidotes for the reversal of direct oral anticoagulants: guidance from the SSC of the ISTH. J Thromb Haemost. 2016;14(3):623–7.

    CAS  PubMed  Google Scholar 

  83. 83.

    Douketis JD, Spyropoulos AC, Anderson JM, Arnold DM, Bates SM, Blostein M, et al. The Perioperative Anticoagulant Use for Surgery Evaluation (PAUSE) Study for patients on a direct oral anticoagulant who need an elective surgery or procedure: design and rationale. Thromb Haemost. 2017;117(12):2415–24 Erratum to: Thromb Haemost. 2018;118(9):1679–1680.

    PubMed  Google Scholar 

  84. 84.

    Seiffge DJ, Traenka C, Polymeris AA, Thilemann S, Wagner B, Hert L, et al. Intravenous thrombolysis in patients with stroke taking rivaroxaban using drug specific plasma levels: experience with a standard operation procedure in clinical practice. J Stroke. 2017;19(3):347–55.

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Touzé E, Gruel Y, Gouin-Thibault I, De Maistre E, Susen S, Sie P, et al. Intravenous thrombolysis for acute ischaemic stroke in patients on direct oral anticoagulants. Eur J Neurol. 2018;25(5):747–e52.

    PubMed  Google Scholar 

  86. 86.

    Cappellari M, Bovi P. Intravenous thrombolysis for stroke in patients taking non-VKA oral anticoagulants: an update. Thromb Haemost. 2015;114(2):440–4.

    CAS  PubMed  Google Scholar 

  87. 87.

    Xian Y, Federspiel JJ, Hernandez AF, Laskowitz DT, Schwamm LH, Bhatt DL, et al. Use of intravenous recombinant tissue plasminogen activator in patients with acute ischemic stroke who take non-vitamin K antagonist oral anticoagulants before stroke. Circulation. 2017;135(11):1024–35.

    CAS  PubMed  Google Scholar 

  88. 88.

    Jin C, Huang RJ, Peterson ED, Laskowitz DT, Hernandez AF, Federspiel JJ, et al. Intravenous tPA (tissue-type plasminogen activator) in patients with acute ischemic stroke taking non-vitamin K antagonist oral anticoagulants preceding stroke. Stroke. 2018;49(9):2237–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Steiner T, Böhm M, Dichgans M, Diener HC, Ell C, Endres M, et al. Recommendations for the emergency management of complications associated with the new direct oral anticoagulants (DOACs), apixaban, dabigatran and rivaroxaban. Clin Res Cardiol. 2013;102(6):399–412.

    CAS  PubMed  Google Scholar 

  90. 90.

    Gouin-Thibault I, Freyburger G, de Maistre E, Susen S, Delavenne X, Golmard JL, et al. GFHT study group on DOAC. Evaluation of dabigatran, rivaroxaban and apixaban target-specific assays in a multicenter French study. Thromb Res. 2017;158:126–33.

    CAS  PubMed  Google Scholar 

  91. 91.

    Godier A, Dincq AS, Martin AC, Radu A, Leblanc I, Antona M, et al. Predictors of pre-procedural concentrations of direct oral anticoagulants: a prospective multicentre study. Eur Heart J. 2017;38:2431–9.

    CAS  PubMed  Google Scholar 

  92. 92.

    Maier CL, Asbury WH, Duncan A, Robbins A, Ingle A, Webb A, et al. Using an old test for new tricks: measuring direct oral anti-Xa drug levels by conventional heparin-calibrated anti-Xa assay. Am J Hematol. 2019;94(5):E132–4.

    PubMed  Google Scholar 

  93. 93.

    Helin TA, Pakkanen A, Lassila R, Joutsi-Korhonen L. Effects of apixaban on prothrombin time, activated partial thromboplastin time and anti-Xa assays: a European survey. Clin Chem Lab Med. 2017;55(8):e178–80.

    CAS  PubMed  Google Scholar 

  94. 94.

    Sabor L, Raphaël M, Dogné JM, Mullier F, Douxfils J. Heparin-calibrated chromogenic anti-Xa assays are not suitable to assess the presence of significant direct factor Xa inhibitors levels. Thromb Res. 2017;156:36–8.

    CAS  PubMed  Google Scholar 

  95. 95.

    Connolly SJ, Crowther M, Eikelboom JW, Gibson CM, Curnutte JT, Lawrence JH, et al. ANNEXA-4 investigators. Full study report of Andexanet Alfa for bleeding associated with factor Xa inhibitors. N Engl J Med. 2019;380(14):1326–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Culbreth SE, Sylvester KW, Rimsans J, Connors JM. Coordinating emergent procedures after andexanet alfa. Am J Hematol. 2019;94(10):E278–82.

    PubMed  Google Scholar 

  97. 97.

    Eche IM, Elsamadisi P, Wex N, Wyers MC, Brat GA, Cunningham K, et al. Intraoperative unfractionated heparin unresponsiveness during endovascular repair of a ruptured abdominal aortic aneurysm following administration of Andexanet Alfa for the reversal of rivaroxaban. Pharmacotherapy. 2019;39(8):861–5.

    CAS  PubMed  Google Scholar 

  98. 98.

    Flaherty D, Connors JM, Singh S, Sylvester KW, Rimsans J, Cornella L. Andexanet Alfa for urgent reversal of Apixaban before aortic surgery requiring cardiopulmonary bypass: a case report. A A Pract. 2019;13(7):271–3.

    PubMed  Google Scholar 

  99. 99.

    Palaiodimos L, Miles J, Kokkinidis DG, Barkolias C, Jonnalagadda AK, Papaconstantinou D, et al. Reversal of novel anticoagulants in emergent surgery and trauma: a comprehensive review and proposed management algorithm. Curr Pharm Des. 2018;24(38):4540–53.

    CAS  PubMed  Google Scholar 

  100. 100.

    Marlar RA, Clement B, Gausman J. Activated partial thromboplastin time monitoring of unfractionated heparin therapy: issues and recommendations. Semin Thromb Hemost. 2017;43(3):253–60.

    PubMed  Google Scholar 

  101. 101.

    Macedo KA, Tatarian P, Eugenio KR. Influence of direct oral anticoagulants on anti-factor Xa measurements utilized for monitoring heparin. Ann Pharmacother. 2018;52(2):154–9.

    CAS  PubMed  Google Scholar 

  102. 102.

    Smythe MA, Priziola J, Dobesh PP, Wirth D, Cuker A, Wittkowsky AK. Guidance for the practical management of the heparin anticoagulants in the treatment of venous thromboembolism. J Thromb Thrombolysis. 2016;41(1):165–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Wendte J, Voss G, VanOverschelde B. Influence of apixaban on antifactor Xa levels in a patient with acute kidney injury. Am J Health Syst Pharm. 2016;73(8):563–7.

    PubMed  Google Scholar 

  104. 104.

    Faust AC, Kanyer D, Wittkowsky AK. Managing transitions from oral factor Xa inhibitors to unfractionated heparin infusions. Am J Health Syst Pharm. 2016;73(24):2037–41.

    CAS  PubMed  Google Scholar 

  105. 105.

    Douketis JD, Spyropoulos AC, Duncan J, Carrier M, Le Gal G, Tafur AJ, et al. Perioperative management of patients with atrial fibrillation receiving a direct oral anticoagulant. JAMA Intern Med. 2019. https://doi.org/10.1001/jamainternmed.2019.2431.

  106. 106.

    Zochert S, Oltman KM, Elgersma BM, Hellwig TR, Gulseth MP. Use of specific anti-Xa levels in acute kidney injury to transition patients from oral factor Xa inhibitors to i.v. heparin infusion. Am J Health Syst Pharm. 2019;76(8):505–11.

    PubMed  Google Scholar 

  107. 107.

    Gheldof, D, Delvigne, A-S, Bouvy, C, Douxfils, J & Dogne, J-M, Assessment of the efficacy and the impact of the rapid, practical and ergonomic DOAC & platelets filter device on thrombin generation assay. In Research and Practice in Thrombosis and Haemostasis. S1 edn, vol. 3, Research and Practice in Thrombosis and Haemostasis, 2019 pp. 144–145.

  108. 108.

    Jourdi G, Delrue M, Stepanian A, Valaize J, Foulon-Pinto G, Demagny J, et al. Potential usefulness of activated charcoal (DOAC remove®) for dRVVT testing in patients receiving direct Oral AntiCoagulants. Thromb Res. 2019;184:86–91.

    CAS  PubMed  Google Scholar 

  109. 109.

    Exner T, Michalopoulos N, Pearce J, Xavier R, Ahuja M. Simple method for removing DOACs from plasma samples. Thromb Res. 2018;163:117–22.

    CAS  PubMed  Google Scholar 

  110. 110.

    Favresse J, Lardinois B, Sabor L, Devalet B, Vandepapeliere J, Braibant M, et al. Evaluation of the DOAC-stop® procedure to overcome the effect of DOACs on several thrombophilia screening tests. TH Open. 2018;2(2):e202–9.

    PubMed  PubMed Central  Google Scholar 

  111. 111.

    Exner T, Favresse J, Lessire S, Douxfils J, Mullier F. Clotting test results correlate better with DOAC concentrations when expressed as a “correction ratio”; results before/after extraction with the DOAC stop reagent. Thromb Res. 2019;179:69–72.

    CAS  PubMed  Google Scholar 

  112. 112.

    Platton S, Hunt C. Influence of DOAC stop on coagulation assays in samples from patients on rivaroxaban or apixaban. Int J Lab Hematol. 2019;41(2):227–33.

    PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Robert C Gosselin.

Ethics declarations

Conflict of Interest

Mr. Gosselin reports personal fees from Expert testimony for rivaroxaban and dabigatran testing, other from Diagnostica Stago, personal fees from Diagnostica Grifols, personal fees from UniQure, other from BioMarin, personal fees from Machaon Diagnostic Laboratory, other from Siemens Healthcare Diagnostics, outside the submitted work; Dr. Douxfils reports personal fees from QUALIblood , personal fees from Stago Diagnostica, personal fees from Daiichi Sankyo, personal fees from Roche, personal fees from Roche Diagnostics, personal fees from Portola, outside the submitted work; In addition, Dr. Douxfils has a patent PCT/EP2019/052903 pending.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Clinical Pharmacology

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rimsans, J., Douxfils, J., Smythe, M.A. et al. Overview and Practical Application of Coagulation Assays in Managing Anticoagulation with Direct Oral Anticoagulants (DOACs). Curr Pharmacol Rep 6, 241–259 (2020). https://doi.org/10.1007/s40495-020-00232-7

Download citation


  • Direct oral anticoagulants
  • Laboratory testing
  • Dabigatran
  • Rivaroxaban
  • Apixaban
  • Edoxaban
  • Betrixaban
  • Ecarin
  • Anti-FXa
  • Thrombin generation
  • Andexanet
  • Dilute thrombin time
  • Thrombin time