The Pharmacological Properties and Therapeutic Use of Bitter Melon (Momordica charantia L.)



Momordica charantia L., a typical vegetable with multiple medicinal properties, is widely culti-vated around the world.

Research contents

Anti-diabetic, anti-obesity, anti-cancer, anti-microbial, hypotensive, antioxidant, anti-hyperlipidemic, anti-inflammatory, immunomodulatory, anthelmintic, and protective properties have been well clarified both in vitro and in vivo, which might be due to various phytochemicals, such as carbohydrates, protein, fatty acids, amino acids, phenolic acids, minerals, essential oils, alkaloids, vitamins, flavonoids, and triterpenoids.


This review summarizes the active components and medicinal properties of different parts of M. charantia, especially the anti-diabetic and anti-cancer properties, aiming to highlight the medicinal usage of M. charantia and provide valuable references for the development of M. charantia as multifunctional food and medicine.

This is a preview of subscription content, log in to check access.


  1. 1.

    Lucas EA, Dumancas G, Smith B, Arjmandi BH. Health benefits of bitter melon (Momordica charantia). Bioactive Foods in Promoting Health. 2010;35:525–49.

    Article  Google Scholar 

  2. 2.

    Wang SZ, Li ZL, Yang GL, Ho CT, Li SM. Momordica charantia: a popular health-promoting vegetable with multifunctionality. Food Funct. 2017;8(5):1749–62.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Basch E, Gabardi S, Ulbricht C. Bitter melon (Momordica charantia): a review of efficacy and safety. Am J Health Syst Pharm. 2003;65:356–9.

    Article  Google Scholar 

  4. 4.

    Tan HF, Gan CY. Polysaccharide with antioxidant, α-amylase inhibitory and ace inhibitory activities from Momordica charantia. Int J Biol Macromol. 2016;85:487–96.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Li ZJ, Chen JC, Deng YY, Song NL, Yu MY, Zhou L, et al. Two new cucurbitane triterpenoids from immature fruits of Momordica charantia. Helv Chim Acta. 2015;98(10):1456–61.

    Article  CAS  Google Scholar 

  6. 6.

    Krawinkel MB, Keding GB. Bitter gourd (Momordica charantia): a dietary approach to hyperglycemia. Nutr Rev. 2010;64(7):331–7.

    Article  Google Scholar 

  7. 7.

    Talapatra S, Ghoshal N, Raychaudhuri SS. Molecular characterization, modeling and expression analysis of a somatic embryogenesis receptor kinase (serk) gene in Momordica charantia L. during somatic embryogenesis. Plant cell Tiss. Org. 2014;116(3):271–83.

    CAS  Google Scholar 

  8. 8.

    Lo HY, Li CC, Ho TY, Hsiang CY. Identification of the bioactive and consensus peptide motif from Momordica charantia insulin receptor-binding protein. Food Chem. 2016;204:298–305.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Guan L. Synthesis and anti-tumour activities of sulphated polysaccharide obtained from Momordica charantia. Nat Prod Res. 2012;26(14):1303–9.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Panda BC, Mondal S, Devi K, Sanjana P. Pectic polysaccharide from the green fruits of Momordica charantia (Karela): structural characterization and study of immunoenhancing and antioxidant properties. Carbohydr Res. 2015;401:24–31.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Deng YY, Yi Y, Zhang LF. Immunomodulatory activity and partial characterisation of polysaccharides from Momordica charantia. Molecules. 2014;19:13432–47.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  12. 12.

    Raish M, Ahmad A, Ansari MA, Alkharfy KM, Aljenobi FI, Jan BL, et al. Momordica charantia, polysaccharides ameliorate oxidative stress, inflammation, and apoptosis in ethanol-induced gastritis in mucosa through nf-kb signaling pathway inhibition. Int J Biol Macromol. 2018;111:193–9.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Popovich DG, Li L, Zhang W. Bitter melon (Momordica charantia) triterpenoid extract reduces preadipocyte viability, lipid accumulation and adiponectin expression in 3t3-l1 cells. Food Chem Toxicol. 2010;48(6):1619–26.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Murakami T, Emoto A, Matsuda H, Yoshikawa M. Medicinal foodstuffs. XXI. Structures of new cucurbitane-type triterpene glycosides, goyaglycosides-a, -b, -c, -d, -e, -f, -g, and -h, and new oleanane-type triterpene saponins, goyasaponins I, II, and III, from the fresh fruit of Japanese Momordica charantia L. Chem Pharm Bull (Tokyo) 2001; 49(1): 54–63.

  15. 15.

    Nakamura S, Murakami T, Nakamura J, Kobayashi H, Matsuda H, Yoshikawa M. Structures of new cucurbitane-type triterpenes and glycosides, karavilagenins and karavilosides, from the dried fruit of Momordica charantia L. in Sri lanka. Chem. Pharm. Bull. 2006;54(11):1545–50.

    CAS  Google Scholar 

  16. 16.

    Mala A, Tulika T. Therapeutic efficacy of Centella asiatica (L.) and Momordica charantia: as traditional medicinal plant. J. Plant Sci. 2015;3(1–1):1–9.

    Google Scholar 

  17. 17.

    Chen JC, Liu WQ, Lu L, Qiu MH, Zheng YT, Yang LM, et al. Kuguacins F-S, cucurbitane triterpenoids from Momordica charantia. Phytochemistry. 2009;70(1):133–40.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Chen J, Tian R, Qiu M, Lu L, Zheng Y, Zhang Z. Trinorcucurbitane and cucurbitane triterpenoids from the roots of Momordica charantia. Phytochemistry. 2008;69(4):1043–8.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Wu SB, Yue GG, To MH, Keller AC, Lau CB, Kennelly EJ. Transport in caco-2 cell monolayers of antidiabetic cucurbitane triterpenoids from Momordica charantia fruits. Planta Med. 2014;80(11):907–11.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Horax R, Hettiarachchy N, Islam S. Total phenolic contents and phenolic acid constituents in 4 varieties of bitter melons (Momordica charantia) and antioxidant activities of their extracts. J Food Sci. 2005;70:275–80.

    Article  Google Scholar 

  21. 21.

    Grossmann ME, Mizuno NK, Dammen ML, Schuster T, Ray A, Cleary MP. Eleostearic acid inhibits breast cancer proliferation by means of an oxidation-dependent mechanism. Cancer Prev Res. 2009;2(10):879–86.

    Article  CAS  Google Scholar 

  22. 22.

    Cummings E, Hundal HS, Wackerhage H, Hope M, Belle M, Adeghate E, et al. Momordica charantia fruit juice stimulates glucose and amino acid uptakes in L6 myotubes. Mol Cell Biochem. 2004;261(1):99–104.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev. 1999;20(5):649–88.

    PubMed  CAS  Google Scholar 

  24. 24.

    Spiegelman BM. PPAR-γ: adipogenic regulator and thiazolidinedione receptor. Diabetes. 1998;47:507–14.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Grover JK, Yadav SP. Pharmacological actions and potential uses of Momordica charantia : a review. J Ethnopharmacol. 2004;93(1):123–32.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Ahmed I, Adeghate E, Sharma AK, Pallot DJ, Singh J. Effects of Momordica charantia fruit juice on islet morphology in the pancreas of the streptozotocin-diabetic rat. Diabetes res clin Pr. 1998;40(3):145–51.

    Article  CAS  Google Scholar 

  27. 27.

    Xiang L, Huang X, Chen L, Rao P, Ke L. The reparative effects of Momordica charantia Linn. extract on HIT-T15 pancreatic beta-cells. Asia Pac. J Clin Nutr 2007; 16(1): 249–252.

  28. 28.

    Tripathi UN, Chandra D. Anti-hyperglycemic and anti-oxidative effect of aqueous extract of Momordica charantia pulp and Trigonella foenum graecum seed in alloxan-induced diabetic rats. Indian J Biochem Biophys. 2010;47(4):227–33.

    PubMed  CAS  Google Scholar 

  29. 29.

    Fernandes NP, Lagishetty CV, Panda VS, Naik SR. An experimental evaluation of the antidiabetic and antilipidemic properties of a standardized Momordica charantia fruit extract. BMC Complem Altern M. 2007;7(1):1–8.

    Article  Google Scholar 

  30. 30.

    Shetty AK, Kumar GS, Sambaiah K, Salimath PV. Effect of bitter gourd (Momordica charantia) on glycaemic status in streptozotocin induced diabetic rats. Plant Food Hum Nutr. 2005;60(3):109–12.

    Article  CAS  Google Scholar 

  31. 31.

    Aljohi A, Matou-Nasri S, Liu D, Al-Khafaji N, Slevin M, Ahmed N. Momordica charantia extracts protect against inhibition of endothelial angiogenesis by advanced glycation endproducts in vitro. Food Funct. 2018;9(11):1–13.

    Article  Google Scholar 

  32. 32.

    Hsieh CH, Chen GC, Chen PH, Wu TF, Chao PM. Altered white adipose tissue protein profile in c57bl/6j mice displaying delipidative, inflammatory, and browning characteristics after bitter melon seed oil treatment. PLoS One. 2013;8(9):e72917.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. 33.

    Chuang CY, Hsu C, Chao CY, Wein YS, Kuo YH, Huang CJ. Fractionation and identification of 9c, 11t, 13t-conjugated linolenic acid as an activator of PPARα in bitter gourd (Momordica charantia L.). J Biomed Sci. 2006;13(6):763–72.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Yibchok-Anun S, Adisakwattana S, Yao CY, Sangvanich P, Roengsumran S, Hsu WH. Slow acting protein extract from fruit pulp of Momordica charantia with insulin secretagogue and insulinomimetic activities. Biol Pharm Bull. 2006;29(6):1126–31.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Platel K, Srinivasan K. Plant foods in the management of diabetes mellitus: vegetables as potential hypoglycaemic agents. Nahrung. 1997;41:68–74.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Chao CY, Huang CJ. Bitter gourd (Momordica charantia) extract activates peroxisome proliferator-activated receptors and upregulates the expression of the acylCoA oxidase gene in H4IIEC3 hepatoma cells. J Biomed Sci. 2003;10:782–91.

    PubMed  Google Scholar 

  37. 37.

    Cheng HL, Huang HK, Chang CI, Tsai CP, Chou CH. A cell-based screening identifies compounds from the stem of Momordica charantia that overcome insulin resistance and activate amp-activated protein kinase. J Agric Food Chem. 2008;56(16):6835–43.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Chaturvedi P, George S. Momordica charantia maintains normal glucose levels and lipid profiles and prevents oxidative stress in diabetic rats subjected to chronic sucrose load. J Med Food. 2010;13(3):520–7.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Wu SJ, Ng LT. Antioxidant and radical scavenging activities of wild bitter melon (Momordica charantia Linn.var.abbreviata Ser.) in Taiwan. LWT-food Sci. Technol. 2008;41:323–30.

    CAS  Google Scholar 

  40. 40.

    Padmashree A, Sharma GK, Semwal AD, Bawa AS. Studies on the antioxygenic activity of bitter gourd (Momordica charantia) and its fractions using various in vitro models. J Sci Food Agric. 2011;91(4):776–82.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Kavitha CN, Babu SM, Rao MB. Influence of Momordica charantia on oxidative stress-induced perturbations in brain monoamines and plasma corticosterone in albino rats. Indian J Pharm. 2011;43(4):424–8.

    Article  CAS  Google Scholar 

  42. 42.

    Ray RB, Raychoudhuri A, Steele R, Nerurkar P. Bitter melon (Momordica charantia) extract inhibits breast cancer cell proliferation by modulating cell cycle regulatory genes and promotes apoptosis. Cancer Res. 2010;70(5):1925–31.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Pitchakarn P, Suzuki S, Ogawa K, Pompimon W, Takahashi S, Asamoto M, et al. Induction of G1 arrest and apoptosis in androgen-dependent human prostate cancer by Kuguacin J, a triterpenoid from Momordica charantia leaf. Cancer Lett. 2011;306(2):142–50.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Kwatra D, Subramaniam D, Ramamoorthy P, Standing D, Moran E, Velayutham R, et al. Methanolic extracts of bitter melon inhibit colon cancer stem cells by affecting energy homeostasis and autophagy. Evid-Based Compl Al Med. 2013;1:221–9.

    Google Scholar 

  45. 45.

    Fang EF, Zhang CZY, Fong WP, Ng TB. RNase MC2: a new Momordica charantia ribonuclease that induces apoptosis in breast cancer cells associated with activation of MAPKs and induction of caspase pathways. Apoptosis. 2012;17(4):377–87.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Xiong SD, Kang Y, Liu XH, Li HY, Kirschenbaum A, Shen Y, et al. Ribosome-inactivating proteins isolated from dietary bitter melon induce apoptosis and inhibit histone deacetylase-1 selectively in premalignant and malignant prostate cancer cells. Int J Cancer. 2009;125(4):774–82.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. 47.

    Brennan VC, Wang CM, Yang WH. Bitter melon (Momordica charantia) extract suppresses adrenocortical cancer cell proliferation through modulation of the apoptotic pathway, steroidogenesis, and insulin-like growth factor type 1 receptor/RAC-α serine/threonine-protein kinase signaling. J Med Food. 2012;15(4):325–34.

    PubMed  Article  Google Scholar 

  48. 48.

    Rajamoorthi A, Shrivastava S, Steele R, Nerurkar P, Gonzalez JG, Crawford S, et al. Bitter melon reduces head and neck squamous cell carcinoma growth by targeting c-met signaling. PLoS One. 2013;8(10):e78006.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49.

    Fan Z, Lin L, Xie J. A mini-review of chemical and biological properties of polysaccharides from Momordica charantia. Int J Biol Macromol. 2016;92:246–53.

    Article  CAS  Google Scholar 

  50. 50.

    Braca A, Siciliano T, D’Arrigo M, Germanò MP. Chemical composition and antimicrobial activity of Momordica charantia seed essential oil. Fitoterapia. 2008;79(2):123–5.

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Wu JD, Chen HM. Study on seperation, purification and biological activity for soluble polysaccharide from Momordica charantia. Food Sci. 2006;27(3):82–6.

    CAS  Google Scholar 

  52. 52.

    Wang SZ, Zhang YB, Liu HG, He Y, Yan JJ, Wu ZH, et al. Molecular cloning and functional analysis of a recombinant ribosome-inactivating protein (alpha-momorcharin) from Momordica charantia. Appl Microbiol Biotechnol. 2012;96(4):939–50.

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Akihisa T, Higo N, Tokuda H, Ukiya M, Akazawa H, Tochigi Y, Kimura Y, Suzuki T, Nishino H. Cucurbitane-type triterpenoids from the fruits of Momordica charantia and their cancer chemopreventive effects. J Nat Prod 2007; 70(8): 1233–1239.

  54. 54.

    Beloin N, Gbeassor M, Akpagana K, Hudson J, Soussa KD, Koumaglo K, et al. Ethnomedicinal uses of Momordica charantia, (Cucurbitaceae) in togo and relation to its phytochemistry and biological activity. J Ethnopharmacol. 2005;96(1–2):49–55.

    PubMed  Article  Google Scholar 

  55. 55.

    Gürbüz İ, Akyüz C, Yeşilada E, Şener B. Anti-ulcerogenic effect of Momordica charantia L. fruits on various ulcer models in rats. J. Ethnopharmacol. 2000;71(1–2):77–82.

    Article  Google Scholar 

  56. 56.

    Telang MA, Pyati P, Sainani M, Gupta VS, Giri AP. Momordica charantia, trypsin inhibitor II inhibits growth and development of helicoverpa armigera. Insect Sci. 2009;16(5):371–80.

    Article  CAS  Google Scholar 

  57. 57.

    Ike K, Uchida Y, Nakamura T, Imai S. Induction of interferon-gamma (IFN-γ) and T helper 1 (Th1) immune response by bitter gourd extract. J Vet Med Sci. 2005;67(5):521–4.

    PubMed  Article  Google Scholar 

  58. 58.

    Kobori M, Ohnishi-Kameyama M, Akimoto Y, Yukizaki C, Yoshida M. Alpha-eleostearic acid and its dihydroxy derivative are major apoptosis-inducing components of bitter gourd. J Agric Food Chem. 2008;56(22):10515–20.

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Manabe M, Takenaka R, Nakasa T, Okinaka O. Induction of anti-inflammatory responses by dietary Momordica charantia L. (bitter gourd). Biosci. Biotech. Bioch. 2003; 67(12): 2512–2517.

  60. 60.

    Yang WS, Yang E, Kim MJ, Jeong D, Yoon DH, Sung GH, et al. Momordica charantia inhibits inflammatory responses in murine macrophages via suppression of tak1. Am J Chinese Med. 2018;46(2):1.

    Article  CAS  Google Scholar 

  61. 61.

    Chan LL, Chen Q, Go AG, Lam EK, Li ET. Reduced adiposity in bitter melon (Momordica charantia)-fed rats is associated with increased lipid oxidative enzyme activities and uncoupling protein expression. J Nutr. 2005;135:2517–23.

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Nerurkar PV, Johns LM, Buesa LM, Kipyakwai G, Volper E, Sato R, et al. Momordica charantia (bitter melon) attenuates high-fat diet-associated oxidative stress and neuroinflammation. J Neuroinflammation. 2011;8(23):1–19.

    Google Scholar 

  63. 63.

    Ng TB, Wong CM, Li WW, Yeung HW. A steryl glycoside fraction from Momordica charantia seeds with an inhibitory action on lipid metabolism in vitro. Biochem Cell Biol. 1986;4(8):766–71.

    Article  Google Scholar 

  64. 64.

    Chen Q, Li ET. Reduced adiposity in bitter melon (Momordica charantia) fed rats is associated with lower tissue triglyceride and higher plasma catecholamines. Brit J Nutr. 2005;93(5):747–54.

    PubMed  Article  CAS  Google Scholar 

Download references


This work was supported by research grants from Huanggang Normal University (2014022203) and Foreign Cooperation Project of Hubei Science and Technology Department (2014BHE036).

Author information



Corresponding author

Correspondence to Shuzhen Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal sunjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cancer Chemoprevention

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Xia, A., Li, S. et al. The Pharmacological Properties and Therapeutic Use of Bitter Melon (Momordica charantia L.). Curr Pharmacol Rep 6, 103–109 (2020).

Download citation


  • Momordica charantia L.
  • Traditional medicine
  • Therapeutic use
  • Pharmacological properties
  • Therapeutic use