Skip to main content

Advertisement

Log in

Characteristic Components, Biological Activities and Future Prospective of Fructus Mori: a Review

  • Natural Products: From Chemistry to Pharmacology (C Ho, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

China has a long history in planting mulberry with the most varieties and the largest production in the world. This article provides a brief overview of an important edible fruit and traditional medicine in China—Fructus Mori (FM, mulberry fruit or Morus alba L. fruit), including the main chemical constituents, major bioactivities and the future prospective.

Recent Findings

Phytochemical studies have revealed that Fructus Mori contains a great diversity of nutritive compounds such as organic acids, amino acids, vitamins, minerals, and bioactive components, including polysaccharides, polyphenolics, anthocyanins, flavonoids, alkaloids, stilbenes, and diels-alder type adducts. Besides, the extracts and active components of FM were reported to have numerous biological activities, including antioxidant, antihyperglycemic, antitumor, hepatoprotective, and neuroprotective activities in in vitro and in vivo studies.

Summary

This review provides recent findings systematically regarding the structural characteristics and biological activities of FM, which may be useful for stimulating deep research of therapeutic potentials and for predicting their uses as important and safe functional foods to benefit human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pel P, et al. Chemical constituents with proprotein convertase subtilisin/kexin type 9 mRNA expression inhibitory activity from dried immature Morus alba fruits. J Agric Food Chem. 2017;65:5316–21.

    Article  CAS  PubMed  Google Scholar 

  2. Singhal BK, et al. Approaches to industrial exploitation of mulberry (Mulberry sp.) fruits. J fruit ornamental Plant Res. 2010;18:83–99.

  3. Yuan QX, Zhao LY. The mulberry (Morus alba L.) fruit: a review of characteristic components and health benefits. J Agric Food Chem. 2017;65:10383–94.

    Article  CAS  PubMed  Google Scholar 

  4. Wei WX, et al. Structural analysis of a polysaccharide from Fructus Mori Albae. Carbohydr Polym. 2007;70:341–4.

    Article  CAS  Google Scholar 

  5. Yang S, Wang BL, Li Y. Advances in the pharmacological study of Morus alba L. Acta Pharm Sin A. 2014;49(6):824–31.

    CAS  Google Scholar 

  6. Jiang Y, Nie WJ. Chemical properties in fruits of mulberry species from the Xinjiang province of China. Food Chem. 2015;174:460–6.

    Article  CAS  PubMed  Google Scholar 

  7. Tang W, Eisenbrand G, Phillipson JD. Chinese drugs of plant origin-chemistry, pharmacology and use in traditional and modern medicine: by W Tang and G Eisenbrand, Springer, New York, Heidelberg, 1992 DM248, 1056pp ISBN 3-540-19309-X Phytochem 1993;32(4):1081.

  8. Bae SH, Suh HJ. Antioxidant activities of five different mulberry cultivars in Korea. LWT-Food Sci Technol. 2007;40(6):955–62.

    Article  CAS  Google Scholar 

  9. Seo KH,  et al. Neuroprotective effect of prenylated arylbenzofuran and flavonoids from Morus alba fruits on glutamate-induced oxidative injury in HT22 hippocampal cells. J Med Food. 2015;18:403–8.

    Article  CAS  PubMed  Google Scholar 

  10. Katsube T, et al. Antioxidant flavonol glycosides in mulberry (Morus alba L.) leaves isolated based on LDL antioxidant activity. Food Chem. 2006;97:25–31.

    Article  CAS  Google Scholar 

  11. Chen CC, et al. Mulberry extract inhibits the development of atherosclerosis in cholesterol-fed rabbits. Food Chem. 2005;91:601–7.

    Article  CAS  Google Scholar 

  12. Sarikaphuti A, et al. Preventive effects of Morus alba L. anthocyanins on diabetes in Zucker diabetic fatty rats. Exp Ther Med. 2013;6:689–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu CJ, Lin JY. Anti-inflammatory and anti-apoptotic effects of strawberry and mulberry fruit polysaccharides on lipopolysaccharide-stimulated macrophages through modulating pro-/anti-inflammatory cytokines secretion and Bcl-2/Bak protein ratio. Food Chem Toxicol. 2012;50(9):3032–9.

    Article  CAS  PubMed  Google Scholar 

  14. Xie JH,  et al. Advances on bioactive polysaccharides from medicinal plants. Crit Rev Food Sci Nutr. 2016;56:S60–84.

    Article  CAS  PubMed  Google Scholar 

  15. Zhou X, et al. Characterizations and hepatoprotective effect of polysaccharides from Mori Fructus in rats with alcoholic-induced liver injury. Int J Biol Macromol. 2017;102:60–7.

    Article  CAS  PubMed  Google Scholar 

  16. Chen C, et al. Chemical property and impacts of different polysaccharide fractions from Fructus Mori on lipolysis with digestion model in vitro. Carbohyd Polym. 2017;178:360–7.

    Article  CAS  Google Scholar 

  17. Bo RS, et al. Promoting effect of polysaccharide isolated from Mori Fructus, on dendritic cell maturation. Food Chem Toxicol. 2013;51(1):411–8.

    Google Scholar 

  18. Deng Q, Zhou X, Chen H. Optimization of enzyme assisted extraction of Fructus Mori polysaccharides and its activities on antioxidant and alcohol dehydrogenase. Carbohydr Polym. 2014;111:775–82.

    Article  CAS  PubMed  Google Scholar 

  19. Lee JS,  et al. Purification, characterization and immunomodulating activity of a pectic polysaccharide isolated from Korean mulberry fruit Oddi (Morus alba L.). Int Immunopharmacol. 2013;17(3):858–66.

    Article  CAS  PubMed  Google Scholar 

  20. Shen S, et al. Effects of extraction methods on antioxidant activities of polysaccharides from camellia seed cake. Eur Food Res Tech. 2014;238(6):1015–21.

    Article  CAS  Google Scholar 

  21. Sun L, et al. Characterization and antioxidant activities of degraded polysaccharides from two marine Chrysophyta. Food Chem. 2014;160:1–7.

    Article  CAS  PubMed  Google Scholar 

  22. He XR, et al. Structures, bioactivities and future prospective of polysaccharides from Morus alba (white mulberry): a review. Food Chem. 2017;245:899–910.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang XM, et al. Isolation and structural characterization of the polysaccharides of cortex mori radices. Acta Chim Sin. 2013;71:722–8.

    Article  CAS  Google Scholar 

  24. Tian RJ. Separation, purification and composition analysis of polysaccharides from Mori fructus. West China J Pharmaceut Sci. 2014;29:401–4.

    CAS  Google Scholar 

  25. Hu HM. Optimization of the extracting parameters, composition analysis and hypoglycemic activity identification of the polysaccharides from mulberry fruits. Thesis for the Degree of Master of Science, HeFei University of Technology, Hefei 2009;37–8.

  26. Liang L, et al. Chemical composition, nutritional value, and antioxidant activities of eight mulberry cultivars from China. Pharmacogn Mag. 2012;8(31):215–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu CJ, Lin JY. Protective effects of strawberry and mulberry fruit polysaccharides on inflammation and apoptosis in murine primary splenocytes. J Food Drug Anal. 2014;22:210–9.

    Article  CAS  Google Scholar 

  28. Chen C, et al. Characterization of polysaccharide fractions in mulberry fruit and assessment of their antioxidant and hypoglycemic activities in vitro. Food Funct. 2016;7(1):530–9.

    Article  CAS  PubMed  Google Scholar 

  29. Choi JW, et al. Structural analysis and anti-obesity effect of a pectic polysaccharide isolated from Korean mulberry fruit Oddi (Morus alba L.). Carbohyd Polym. 2016;146:187–96.

    Article  CAS  Google Scholar 

  30. Fiorentini D, et al. Polyphenols as modulators of aquaporin family in health and disease. Oxid Med Cell Long. 2015;2015(7):196914.

    Google Scholar 

  31. Han XZ, Shen T, Lou HX. Dietary polyphenols and their biological significance. Int J Mol Sci. 2007;8:950–88.

    Article  CAS  PubMed Central  Google Scholar 

  32. Del Rio D, et al. Dietary (poly) phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Sign. 2013;18(14):1818–92.

    Article  CAS  Google Scholar 

  33. Wang Y, et al. Antidiabetic and antioxidant effects and phytochemicals of mulberry fruit (Morus alba L.) polyphenol enhanced extract. Plos One. 2013;8(7):e71144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu JS,  et al. Chemical characterization of cytotoxic indole acetic acid derivative from mulberry fruit (Morus alba L.) against human cervical cancer. Bioorg Chem. 2018;76:28–36.

    Article  CAS  PubMed  Google Scholar 

  35. Asano N,  et al. Polyhydroxylated alkaloids isolated from mulberry trees (Morus alba L.) and silk worms (Bombyx mori L.). J Agric Food Chem. 2001;49:4208–13.

    Article  CAS  PubMed  Google Scholar 

  36. Kim HB, et al. Effect of methanol extract from mulberry fruit on the lipid metabolism and liver function in cholesterol-induced hyperlipidemia rats. Korean J Seri Sci. 2001;43:104–8.

    Google Scholar 

  37. Kim SY, Park KJ, Lee WC. Antiinflamatory and antioxidative effects of Morus spp. fruit extract. Korean J Med Crop Sci. 1998;6:204–9.

    Google Scholar 

  38. Mia I, et al. Peroxyl radical scavenging capacity, polyphenolics, and lipophilic antioxidant profiles of mulberry fruits cultivated in southern China. J Agric Food Chem. 2008;56:9410–6.

    Article  CAS  Google Scholar 

  39. Liu X, et al. Quantification and purification of mulberry anthocyanins with macroporous resins. J Biomed Biotechnol. 2004;2004(5):326–31.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kazeem MI, Davies TC. Anti-diabetic functional foods as sources of insulin secreting, insulin sensitizing and insulin mimetic agents. J Funct Food. 2016;20:122–38.

    Article  CAS  Google Scholar 

  41. Yan F, Dai G, Zheng X. Mulberry anthocyanin extract ameliorates insulin resistance by regulating PI3K/AKT pathway in HepG2 cells and db/db mice. J Nutr Biochem. 2016;36:68–80.

    Article  CAS  PubMed  Google Scholar 

  42. Natić MM,  et al. Analysis and characterisation of phytochemicals in mulberry (Morus alba L.) fruits grown in Vojvodina, North Serbia. Food Chem. 2015;171:128–36.

    Article  PubMed  CAS  Google Scholar 

  43. Li FH, et al. The novel contributors of anti-diabetic potential in mulberry polyphenols revealed by UHPLC-HRESI-TOF-MS/MS. Food Res Int. 2017;100(1):873–84.

    Article  CAS  Google Scholar 

  44. Raman ST, et al. In vitro and in vivo antioxidant activity of flavonoid extracted from mulberry fruit (Morus alba L.). Pharmacog Mag. 2016;12(46):128–33.

    Article  CAS  Google Scholar 

  45. Liu LK, et al. Mulberry anthocyanin extracts inhibit LDL oxidation and macrophage derived foam cell formation induced by oxidative LDL. J Food Sci. 2008;73:113–21.

    Article  CAS  Google Scholar 

  46. Chen PN, et al. Mulberry anthocyanins, cyanidin 3-rutinoside and cyanidin 3-glucoside, exhibited an inhibitory effect on the migration and invasion of a human lung cancer cell line. Cancer Lett. 2006;235:248–59.

    Article  CAS  PubMed  Google Scholar 

  47. Chen Y, et al. Adsorption properties of macroporous adsorbent resins for separation of anthocyanins from mulberry. Food Chem. 2016;194:712–72.

    Article  CAS  PubMed  Google Scholar 

  48. Qin CG, et al. Analysis and characterisation of anthocyanins in mulberry fruit. Czech J Food Sci. 2010;28:117–26.

    Article  CAS  Google Scholar 

  49. Chen H, et al. Antinociceptive and antibacterial properties of anthocyanins and flavonols from fruits of black and non-black mulberries. Molecules. 2018;23:4.

    Article  CAS  Google Scholar 

  50. Du Q, Zheng J, Xu Y. Composition of anthocyanins in mulberry and their antioxidant activity. J Food Compos Anal. 2008;21(5):390–5.

    Article  CAS  Google Scholar 

  51. Sheng F, et al. Separation and identification of anthocyanin extracted from mulberry fruit and the pigment binding properties toward human serum albumin. J Agric Food Chem. 2014;62:6813–9.

    Article  CAS  PubMed  Google Scholar 

  52. Pornanong A, Nipaporn B, Teerapol S. The properties and stability of anthocyanins in mulberry fruits. J Food Res Int. 2010;43:1093–7.

    Article  CAS  Google Scholar 

  53. Robbins RJ. Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem. 2003;51:2866–87.

    Article  CAS  PubMed  Google Scholar 

  54. Clifford MN. Chlorogenic acids and other cinnamates-nature, occurrence, and dietary burden. J Sci Food Agric. 1999;79:362–72.

    Article  CAS  Google Scholar 

  55. Gecer MK, et al. Organic acids, sugars, phenolic compounds, and some horticultural characteristics of black and white mulberry accessions from eastern Anatolia. Can J Plant Sci. 2016;96:27–33.

    Article  CAS  Google Scholar 

  56. Butkhup L, Samappito W, Samappito S. Phenolic composition and antioxidant activity of white mulberry (Morus alba L.) fruits. Int J Food Sci Technol. 2013;48:934–40.

    Article  CAS  Google Scholar 

  57. Mahmood T, et al. Compositional variation in sugars and organic acids at different maturity stages in selected small fruits from Pakistan. Int J Mol Sci. 2012;13:1380–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim SB,  et al. Macrophage activating activity of pyrrole alkaloids from Morus alba fruits. J Ethnopharmacol. 2013;145(1):393–6.

    Article  CAS  PubMed  Google Scholar 

  59. Song W, et al. Phytochemical profiles of different mulberry (Morus sp.) species from China. J Agric Food Chem. 2009;57:9133–40.

    Article  CAS  PubMed  Google Scholar 

  60. Golkar L,  et al. Resveratrol inhibits pancreatic cancer cell proliferation through transcriptional induction of macrophage inhibitory cytokine-11. J Surg Res. 2007;138:163–9.

    Article  CAS  PubMed  Google Scholar 

  61. Bastianetto S, Zheng WH, Quirion R. Neuroprotective abilities of resveratrol and other red wine constituents against nitric oxide related toxicity in cultured hippocampal neurons. Br J Pharmacol. 2000;131:711–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bradamante S,  et al. Resveratrol provides latephase cardioprotection by means of a NO and adenosine mediated mechanism. Eur J Pharmacol. 2003;465:115–23.

    Article  CAS  PubMed  Google Scholar 

  63. Shin NH,  et al. Oxyresveratrol as the potent inhibitor on dopa oxidase activity of mushroom tyrosinase. Biochem Biophys Res Commun. 1998;243(3):801–3.

    Article  CAS  PubMed  Google Scholar 

  64. Eom SH, et al. Changes of antioxidant activity in Juglans mandshurica Maxim. leaves by far infrared ray irradiation. Korean J Med Crop Sci. 2007;15(4):266–70.

    Google Scholar 

  65. Hong H, et al. Characteristics of Chinese chives (Allium tuberosum) fermented by Leuconostoc mesenteroides. Appl Biol Chem. 2016;59(3):349–57.

    Article  CAS  Google Scholar 

  66. Richter C, Park JW, Ames BN. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA (PNAS). 1988;85:6465–7.

    Article  CAS  Google Scholar 

  67. Dimitrijević DS, et al. Phenolic composition, antioxidant activity, mineral content and antimicrobial activity of fresh fruit extracts of Morus alba L. J Food Nutr Res. 2014;53(1):22–30.

    Google Scholar 

  68. Chen H, et al. Variation in total anthocyanin, phenolic contents, antioxidant enzyme and antioxidant capacity among different mulberry (Morus sp.) cultivars in China. Sci Hortic. 2016;213:186–92.

    Article  CAS  Google Scholar 

  69. Khattak KF, Rahman TR. Effect of geographical distributions on the nutrient composition, phytochemical profile and antioxidant activity of Morus nigra. Pak J Pharm Sci. 2015;28(5):1671–8.

    CAS  PubMed  Google Scholar 

  70. Dimitrijevic DS, et al. Polyphenol contents and antioxidant activity of five fresh fruit Morus spp. (Moraceae) extracts. Agro Food Industry Hi-Tech. 2013;24(5):34–7.

    CAS  Google Scholar 

  71. Cai YZ, et al. Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 2006;78:2872–88.

    Article  CAS  PubMed  Google Scholar 

  72. Li JW, Ding SD, Ding XL. Comparison of antioxidant capacities of extracts from five cultivars of Chinese jujube. Process Biochem. 2005;40:3607–13.

    Article  CAS  Google Scholar 

  73. Chen C, et al. Optimization for ultrasound extraction of polysaccharides from mulberry fruits with antioxidant and hyperglycemic activity in vitro. Carbohyd Polym. 2015;130:122–32.

    Article  CAS  Google Scholar 

  74. Raman ST, et al. In vitro and in vivo antioxidant activity of flavonoid extracted from mulberry fruit (Morus alba L.). Pharmacogn Mag. 2016;12(46):128–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabetic Med. 1998;15:539–53.

    Article  CAS  PubMed  Google Scholar 

  76. Guo H, Ling W. The update of anthocyanins on obesity and type 2 diabetes: experimental evidence and clinical perspectives. Rev Endocr Metab Dis. 2015;16(1):1–13.

    Article  CAS  Google Scholar 

  77. Yan F, Zheng X. Anthocyanin-rich mulberry fruit improves insulin resistance and protects hepatocytes against oxidative stress during hyperglycemia by regulating ampk/acc/mtor pathway. J Funct Foods. 2017;30:270–81.

    Article  CAS  Google Scholar 

  78. Yan F, et al. Mulberry anthocyanin extract regulates glucose metabolism by promotion of glycogen synthesis and reduction of gluconeogenesis in human HepG2 cells. Food Funct. 2016;7(1):425–33.

    Article  CAS  PubMed  Google Scholar 

  79. Choi KH, et al. Mulberry (Morus alba L.) fruit extract containing anthocyanins improves glycemic control and insulin sensitivity via activation of amp-activated protein kinase in diabetic c57bl/ksj-db/db mice. J Med Food. 2016;19(8):737–45.

    Article  CAS  PubMed  Google Scholar 

  80. Chen C, et al. Hypoglycemic effects of a fructus mori polysaccharide in vitro and in vivo. Food Funct. 2017;8(5):2523–34.

    Article  CAS  PubMed  Google Scholar 

  81. Jiao Y, et al. Antidiabetic effects of Morus alba fruit polysaccharides on high-fat diet- and streptozotocin-induced type 2 diabetes in rats. J Ethnopharmacol. 2017;199:119–27.

    Article  CAS  PubMed  Google Scholar 

  82. Zhao HY, et al. Evaluations of biomarkers associated with sensitivity to 5-fluorouracil and taxanes for recurrent/advanced breast cancer patients treated with capecitabine-based first-line chemotherapy. Anti-Cancer Drug. 2012;23:534–42.

    Article  CAS  Google Scholar 

  83. Khalid S, et al. A review on chemistry and pharmacology of Ajwa date fruit and pit. Trends Food Sci Technol. 2017;63:60–9.

    Article  CAS  Google Scholar 

  84. Qin XJ,  et al. Meroterpenoids with antitumor activities from guava (Psidium guajava). J Agric Food Chem. 2017;65:4993–9.

    Article  CAS  PubMed  Google Scholar 

  85. Chang BY, et al. Improved chemotherapeutic activity by Morus alba fruits through immune response of toll-like receptor 4. Int J Mol Sci. 2015;16(10):24139–58.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Cho E, et al. Anti-cancer effect of cyanidin-3-glucoside from mulberry via caspase-3 cleavage and dna fragmentation in vitro and in vivo. Anti-cancer agent. 2017;17:1519–25.

    CAS  Google Scholar 

  87. Lee SR,  et al. Odisolane, a novel oxolane derivative, and antiangiogenic constituents from the fruits of mulberry (Morus alba L.). J Agric Food Chem. 2016;64:3804–9.

    Article  CAS  PubMed  Google Scholar 

  88. Chen NC, et al. Promotion of mitotic catastrophe via activation of PTEN by paclitaxel with supplement of mulberry water extract in bladder cancer cells. Sci Rep. 2016;6:20417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tolman KG, Dalpiaz AS. Occupational and environmental hepatotoxicity. Drug-induced Liver Disease (third ed.), Academic press, Boston 2013;Chapter 36:659–75.

  90. Lopez AM, Hendrickson RG. Toxin-induced hepatic injury. Emerg Med Clin N Am. 2014;32(1):103–25.

    Article  Google Scholar 

  91. Leise MD, Poterucha JJ, Talwa lkar JA. Drug-induced liver injury. Mayo Clin Proc. 2014;89(1):95–106.

    Article  CAS  PubMed  Google Scholar 

  92. Gunawan BK, Kaplowitz N. Mechanisms of drug-induced liver disease. Clin Liver Dis. 2007;11(3):459–75.

    Article  PubMed  Google Scholar 

  93. Zhao P, et al. Causes and outcomes of acute liver failure in China. Plos One. 2013;8(11):e80991.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Li Y, et al. Protective effect and mechanism of action of mulberry marc anthocyanins on carbon tetrachloride-induced liver fibrosis in rats. J Funct Food. 2016;24:595–601.

    Article  CAS  Google Scholar 

  95. Ou TT, et al. Improvement of lipopolysaccharide-induced hepatic injuries and inflammation with mulberry extracts. J Sci Food Agr. 2013;93(8):1880–6.

    Article  CAS  Google Scholar 

  96. Tang CC, et al. Hepatoprotective effect of mulberry water extracts on ethanol-induced liver injury via anti-inflammation and inhibition of lipogenesis in c57bl/6j mice. Food Chem Toxicol. 2013;62:786–96.

    Article  CAS  PubMed  Google Scholar 

  97. Chang JJ, et al. Mulberry anthocyanins inhibit oleic acid induced lipid accumulation by reduction of lipogenesis and promotion of hepatic lipid clearance. J Agr Food Chem. 2013;61(25):6069–76.

    Article  CAS  Google Scholar 

  98. Wang X, et al. Characterization and activity effect on ADH of polysaccharides from Mori Fructus. China J Chinese Mater Med. 2017;42:2329–33.

    Google Scholar 

  99. Kim HG, Oh MS. Memory-enhancing effect of Mori fructus via induction of nerve growth factor. Bri J Nutr. 2013;110(1):86–94.

    Article  CAS  Google Scholar 

  100. Feng X,  et al. Resveratrol inhibits β-amyloid-induced neuronal apoptosis through regulation of SIRT1-ROCK1signaling pathway. Plos One. 2013;8:e59888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kim HG,  et al. Mori Fructus improves cognitive and neuronal dysfunction induced by beta-amyloid toxicity through the gsk-3β-athway in vitro and in vivo. J Ethnopharmacol. 2015;171:196–204.

    Article  PubMed  Google Scholar 

  102. Kim HG, et al. Mori folium and Mori fructus mixture attenuates high-fat diet-induced cognitive deficits in mice. Evid Based Complement Alternat Med. 2015;2015(12):379418.

    PubMed  PubMed Central  Google Scholar 

  103. Sirikanchanarod A, et al. The effect of mulberry fruits consumption on lipid profiles in hypercholesterolemic subjects: a randomized controlled trial. J Pharm Nutr Sci. 2016;1:7–14.

    Google Scholar 

  104. Chan KC, et al. Mulberry polyphenols induce cell cycle arrest of vascular smooth muscle cells by inducing NO production and activating AMPK and p 53. J Funct Food. 2015;15:604–13.

    Article  CAS  Google Scholar 

  105. Jiang DQ, et al. Antioxidant and anti-fatigue effects of anthocyanins of mulberry juice purification (MJP) and mulberry marc purification (MMP) from different varieties mulberry fruit in China. Food Chem Toxicol. 2013;59(9):1–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We’d also like to thank the journal’s editor-in-chief, Tony Kong, for reviewing the article.

Funding

This study was supported by the National Natural Science Foundation of China (No. 31570348).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naisheng Bai.

Ethics declarations

Conflict of Interest

Sen Guo, Lu Bai, Chi-Tang Ho, and Naisheng Bai declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Natural Products: From Chemistry to Pharmacology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Bai, L., Ho, CT. et al. Characteristic Components, Biological Activities and Future Prospective of Fructus Mori: a Review. Curr Pharmacol Rep 4, 210–219 (2018). https://doi.org/10.1007/s40495-018-0135-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-018-0135-4

Keywords

Navigation