Skip to main content

Advertisement

Log in

Biobanking in Precision Medicine

  • Precision Medicine and Pharmacogenomics (S Nair, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Precise treatment of a disease, with a concerted analysis at the genomic and phenotypic level, is a paradigm shift from the one-size-fits-all treatment practiced for centuries. As part of the Precision Medicine Initiative, a million cohort samples will be collected for research and development of unique genetic markers in the study of the relationship of genomic markers to cancer. The million cohort samples are only as good as the conditions under which the samples are collected and stored. The purpose of this review is to discuss an economically viable biobanking solution for tissue, blood, and nucleic acid storage for such an endeavor!

Recent Findings

Tissue biopsy and whole blood are two common types of tissues collected for the Precision Medicine Initiative. Tissue samples can be stored as formalin-fixed paraffin-embedded (FFPE) blocks at ambient for decades, but fresh tissue samples although limited in sample size are better suited for downstream application. Postmortem collection of tissue is a good alternative to fresh tissue samples if the samples can be acquired in a timely manner before cold ischemia sets in. Blood is the preferred tissue sample for the Precision Medicine Initiative as it is easy to collect compared to other tissue types. Energy and space limitations are going to be crucial for storing a million samples for decades. Dry storage at ambient temperature is an alternative to the ultra-low-temperature storage of samples. Dry storage of whole blood samples as dried blood spots (DBS) or of the isolated components such as nucleic acids at ambient is ideal. In this review, we discuss the ambient temperature storage of blood samples and of nucleic acid.

Summary

The million cohort biobanked blood and tissue samples will be crucial references for decades to come as new discoveries are made and new markers identified. Collection of blood samples at ambient as DBS and storage of the associated nucleic acid at ambient will be the key to the long-term success of biobanking of this large cohort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. • Collins FS, Varmus H. A New Initiative on Precision Medicine. N Engl J Med. 2015;372:793–5. Principle article describing the Precision Medicine initiative

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. • Ashley EA. Towards precision medicine. Nat Rev. 2016;17(9):507–22. Highlights differences between precision medicine and personal medicine. https://doi.org/10.1038/nrg.2016.86.

    Article  CAS  Google Scholar 

  3. • Alix-Panabie C, Pantel K. Circulating Tumor Cells: Liquid Biopsy of Cancer. Clinical Chemistry. 2013;59(1):110–8. Review article on methods developed for assessing CTC’s.

    Article  Google Scholar 

  4. Prasad V. Perspective: the precision-oncology illusion. Nature. 2016;537(7619):S63. https://doi.org/10.1038/537S63a.

    Article  CAS  PubMed  Google Scholar 

  5. • Tannock IF, Hickman JA. Limits to personalized cancer medicine. N Engl J Med. 2016;375:1289–94. Argues limitations of the precision medicine approach to treatment.

    Article  PubMed  Google Scholar 

  6. Simeon-dubach D, Perren A. Better provenance for biobank samples. Nature. 2011;475:454–5.

    Article  CAS  PubMed  Google Scholar 

  7. Gillespie K, Luft H, Hernandez Y, Lee S, Cho M, Craft S. Patient views on the use of personal health information and biological samples for biobank research. J Patient Cent Res Rev. 2017;4:17.

    Google Scholar 

  8. https://healthitanalytics.com/news/kaiser-permanente-expands-precision-medicine-biobanking-effort

  9. https://researchbank-econsent.kaiserpermanente.org/ConsentForm/ConsentForLocalPrint/. Kaiser Foundation’s efforts to collect and store the biological samples.

  10. • Gazianoa JM, Concatoc J, d, Brophya M, Fiorea L, Pyarajana S, Breelinga J, et al. Million Veteran Program: A mega-biobank to study genetic influences on health and disease. J Clin Epidemiol. 2016;70:214e223. The Million Veteran Program initiative to look for genetic markers, a prequel to Precision Medicine Initiative.

  11. Hantzsch M, Tolios A, Beutner F, Nagel D, Thiery J, Teupser D, et al. Comparison of whole blood RNA preservation tubes and novel generation RNA extraction kits for analysis of mRNA and MiRNA profiles. PLoS One. 2014;9(12):e113298. https://doi.org/10.1371/journal.pone.0113298.

    Article  PubMed  PubMed Central  Google Scholar 

  12. von Wasielewski R, Mengel M, Nolte M, Werner M. Influence of fixation, antibody clones, and signal amplification on steroid receptor analysis. Breast J. 1998;4(1):33–40. https://doi.org/10.1046/j.1524-4741.1998.410033.x.

    Article  Google Scholar 

  13. • Björkesten J, Enroth S, Shen Q, Wik L, Hougaard DM, Colen AS, et al. Stability of Proteins in Dried Blood Spot Biobanks. Mol Cell Proteomics. 2017;16(7):1286–96. Report isolation of stable protein from DBS stored for up to 30 years at +4C or -24C. Drying blood on paper was 99% reproducible with half-life in the range of 10 to 50 years.

  14. Bertagnolio, S., Parkin, N., T., Jordan, M., Brooks, J., Garcia-Lerma, J., G. Dried Blood spots for HIV-1 drug resistance and viral load testing: a review of current knowledge and WHO efforts for global HIV drug resistance surveillance. AIDS Rev 2010 Oct; 12(4):195–208.

  15. Gauffin F, Nordgren A, Barbany G, Gustafsson B, Karlsson H. Quantitation of RNA decay in dried blood spots during 20 years of storage. Clin Chem Lab Med. 2009;47(12):1467–9. https://doi.org/10.1515/CCLM.2009.351.

    Article  CAS  PubMed  Google Scholar 

  16. • Fox CH, Johnson FB, Whiting J, Roller PP. Formaldehyde fixation. J Histochem Cytochem. 1985;33:845–53. Review article on FFPE

    Article  CAS  PubMed  Google Scholar 

  17. B. Paige Bass, PhD; Kelly B. Engel, PhD; Sarah R. Greytak, PhD; Helen M. Moore, PhD A review of preanalytical factors affecting molecular, protein, and morphological analysis of formalin-fixed, paraffin-embedded (FFPE) tissue: how well do you know your FFPE specimen? Arch Pathol Lab Med 2014 Nov; 138:1520–1530, 11, DOI: https://doi.org/10.5858/arpa.2013-0691-RA.

  18. Hood BL, Darfler§ MM, Guiel TG, Furusato B, Lucas DA, Ringeisen BR, et al. Proteomic analysis of formalin-fixed prostate cancer tissue. Mol Cell Proteomics. 2005;4(11):1741–53. https://doi.org/10.1074/mcp.M500102-MCP200.

  19. Fraenkel-Conrat H, Olcott HS. The reaction of formaldehyde with proteins; crosslinking between amino and primary amide or guanidyl groups. J Am Chem Soc. 1948;70(8):2673–84. https://doi.org/10.1021/ja01188a018.

    Article  CAS  PubMed  Google Scholar 

  20. Metz B, Kersten GF, Hoogerhout P, Brugghe HF, Timmermans HA, de Jong A, et al. Identification of formaldehyde-induced modifications in proteins: reactions with model peptides. J Biol Chem. 2004;279(8):6235–43. https://doi.org/10.1074/jbc.M310752200.

  21. Middlebrook WR, Phillips H. The action of formaldehyde on the cystine disulphide linkage of wool; the conversion of subfraction a of the combined cystine into combined lanthionine and djenkolic acid and subfraction B into combined thiazolidine-4-carboxylic acid. Biochem J. 1947;41:218223.

    Article  Google Scholar 

  22. Jackson V. Studies on histone organization in the nucleosome using formaldehyde as a reversible cross-linking agent. Cell. November 1978;15(3):945–54. https://doi.org/10.1016/0092-8674(78)90278-7.

    Article  CAS  PubMed  Google Scholar 

  23. Beaulieu M, Desaulniers M, Bertrand N, et al. Analytical performance of a qRT-PCR assay to detect guanylyl cyclase C in FFPE lymph nodes of patients with colon cancer. Diagn Mol Pathol. 2010;19(1):20–7.

    Article  CAS  PubMed  Google Scholar 

  24. Chu WS, Furusato B, Wong K, et al. Ultrasound-accelerated formalin fixation of tissue improves morphology, antigen and mRNA preservation. Mod Pathol. 2005;18(6):850–63.

    Article  CAS  PubMed  Google Scholar 

  25. Boenisch T. Effect of heat-induced antigen retrieval following inconsistent formalin fixation. Appl Immunohistochem Mol Morphol. 2005;13(3):283–6. https://doi.org/10.1097/01.0000146524.74402.a4.

    Article  CAS  PubMed  Google Scholar 

  26. Ibarra JA, Rogers LW, Kyshtoobayeva A, Bloom K. Fixation time does not affect the expression of estrogen receptor. Am J Clin Pathol. 2010;133(5):747–55. https://doi.org/10.1309/AJCPPIUHS4GVAR0I.

    Article  PubMed  Google Scholar 

  27. Leong AS, Milios J, Duncis CG. Antigen preservation in microwaveirradiated tissues: a comparison with formaldehyde fixation. J Pathol. 1988;156(4):275–82. https://doi.org/10.1002/path.1711560402.

    Article  CAS  PubMed  Google Scholar 

  28. O’Rourke MB, Padula MP. Analysis of formalin-fixed, paraffin-embedded (FFPE) tissue via proteomic techniques and misconceptions of antigen retrieval. BioTechniques. May 2016;60(5):229–38. https://doi.org/10.2144/000114414.

    PubMed  Google Scholar 

  29. Williams JH, Mepham BL, Wright DH. Tissue preparation for immunocytochemistry. J Clin Pathol. 1997;50(5):422–8. https://doi.org/10.1136/jcp.50.5.422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ferrer I, Armstrong J, Capellari S, et al. Effects of formalin fixation, paraffin embedding, and time of storage on DNA preservation in brain tissue: a BrainNet Europe study. Brain Pathol. 2007;17(3):297–303.

    Article  CAS  PubMed  Google Scholar 

  31. Nuovo GJ, Richart RM. Buffered formalin is the superior fixative for the detection of HPV DNA by in situ hybridization analysis. Am J Pathol. 1989; 134(4):837–842.O’Leary JJ, Browne G, Landers RJ, et al. The importance of fixation procedures on DNA template and its suitability for solution-phase polymerase chain reaction and PCR in situ hybridization. Histochem J. 1994;26(4):337–46.

    Article  Google Scholar 

  32. Reineke T, Jenni B, Abdou MT, et al. Ultrasonic decalcification offers new perspectives for rapid FISH, DNA, and RT-PCR analysis in bone marrow trephines. Am J Surg Pathol. 2006;30(7):892–6.

    Article  PubMed  Google Scholar 

  33. Zsikla V, Baumann M, Cathomas G. Effect of buffered formalin on amplification of DNA from paraffin wax embedded small biopsies using real-time PCR. J Clin Pathol. 2004;57(6):654–6. https://doi.org/10.1136/jcp.2003.013961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wickham CL, Sarsfield P, Joyner MV, Jones DB, Ellard S, Wilkins B. Formic acid decalcification of bone marrow trephines degrades DNA: alternative use of EDTA allows the amplification and sequencing of relatively long PCR products [published correction appears in Mol Pathol. 2001;54(2):120]. Mol Pathol. 2000; 53(6):e336.

  35. Babic A, Loftin IR, Stanislaw S, et al. The impact of pre-analytical processing on staining quality for H&E, dual hapten, dual color in situ hybridization and fluorescent in situ hybridization assays. Methods. 2010;52(4): 287–300. Reineke T, Jenni B, Abdou MT, et al. ultrasonic decalcification offers new perspectives for rapid FISH, DNA, and RT-PCR analysis in bone marrow trephines. Am J Surg Pathol. 2006;30(7):892–6.

    Article  Google Scholar 

  36. Alers JC, Krijtenburg PJ, Vissers KJ, van Dekken H. Effect of bone decalcification procedures on DNA in situ hybridization and comparative genomic hybridization: EDTA is highly preferable to a routinely used acid decalcifier. J Histochem Cytochem. 1999;47(5):703–10. https://doi.org/10.1177/002215549904700512.

    Article  CAS  PubMed  Google Scholar 

  37. Choi E-H, Lee SK, Ihm C, Sohn Y-H. Rapid DNA extraction from dried blood spots on filter paper: potential applications in biobanking. Osong Public Health Res Perspect. 2014 Dec;5(6):351–7. https://doi.org/10.1016/j.phrp.2014.09.005.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Molteni CG, Terranova L, Zampiero A, Galeone C, Principi N, Esposito S. Comparison of manual methods of extracting genomic DNA from dried blood spots collected on different cards: implications for clinical practice. Int J Immunopathol Pharmacol. 2013 Jul-Sep;26(3):779–83. https://doi.org/10.1177/039463201302600324.

    Article  CAS  PubMed  Google Scholar 

  39. Olsvik PA, Lie KK, Jordal A-EO, Nilsen TO, Hordvik I. Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. BMC Mol Biol. 2005;6:21.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Daniels R, Volkman SK, Milner DA, Mahesh N, Neafsey DE, Park DJ, et al. A general SNP-based molecular barcode for plasmodium falciparum identification and tracking. Malar J. 2008;7(1):223. https://doi.org/10.1186/1475-2875-7-223.

  41. McClure MC, McKay SD, Schnabel RD, Taylor JF. Assessment of DNA extracted from FTA®cards for use on the Illumina iSelect BeadChip. BMC Research Notes. December 2009;2(1):107. https://doi.org/10.1186/1756-0500-2-107.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Application note: Arunkumar Padmanaban. DNA Integrity Number (DIN) For the Assessment of Genomic DNA Samples in Real-Time Quantitative PCR (qPCR) Experiments. http://hpst.cz/sites/default/files/attachments/5991-6368en.pdf

  43. Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Grassmann M, et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol. 2006;7(1):3. https://doi.org/10.1186/1471-2199-7-3.

  44. Application note: Odilo Mueller Samar Lightfoot Andreas Schroeder. RNA Integrity Number (RIN) – Standardization of RNA Quality Control. http://gene-quantification.net/RIN.pdf

  45. Kozera B, Marcin M. Reference genes in real-time PCR. J Appl Genetics. 2013;54(4):391–406. https://doi.org/10.1007/s13353-013-0173-x.

    Article  CAS  Google Scholar 

  46. Shana L McDevitt, Michael E Hogan, Derek J Pappas, Lily Y Wong, and Janelle A Noble. DNA storage under high temperature conditions does not affect performance in human leukocyte antigen genotyping via next-generation sequencing (DNA integrity maintained in extreme conditions). Biopreservation and Biobanking. Volume 12, Number 6, 2014.

  47. Graf E, Mahoney J, Bryant R, Eaton J. Iron-catalyzed hydroxyl radical formation. Stringent requirement for free iron coordination site. J Biol Chem. 1984;259(6):3620–4.

    CAS  PubMed  Google Scholar 

  48. Williams RJ, Carl Leopold A. The glassy state in corn embroys. Plant Physiol. 1989 Mar;89(3):977–81. https://doi.org/10.1104/pp.89.3.977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bohr VA, and Okumoto DS. (pp. 347–366): DNA Repair: A Laboratory Manual of Research Procedures. In:Friedberg, E.C., and Hanawalt, P.C., editors. Marcel Dekker, Inc., New York, 1988.

  50. Fritz LK, Suquet C, Smerdon MJ. Strand breaks are repaired efficiently in human ribosomal genes. J Biol Chem. 1996;271(22):12972–6. https://doi.org/10.1074/jbc.271.22.12972.

    Article  CAS  PubMed  Google Scholar 

  51. Alizadeh AA, Aranda V, Bardelli A, Blanpain C, Bock C, Borowski C, et al. Toward understanding and exploiting tumor heterogeneity. Nat Med. 2015;21(8):846–53. https://doi.org/10.1038/nm.3915.

  52. Shin SH, Bode AM, Dong Z. Precision medicine: the foundation of future cancer therapeutics. npj Precision Oncology. 2017;1, 1

  53. • Reza Mirnezami MRCS, Nicholson J, PD, Darzi A, Md. Preparing for Precision Medicine. N Engl J Med. 2012;366:489–91. Brings together the perspective on the paradigm shift of how the holistic approach of precision medicine will aid in the treatment of cancer and potentially reduce the time to market of life saving drugs

  54. Parashar A, Udayabanu M. Gut microbiota: implications in Parkinson’s disease. Parkinsonism Relat Disord. 2017 May;38:1–7. https://doi.org/10.1016/j.parkreldis.2017.02.002.

    Article  PubMed  Google Scholar 

  55. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341(6150):1241214. https://doi.org/10.1126/science.1241214.

  56. • Carithers LJ, Ardlie K, Barcus M, Branton PA, Britton A, Buia SA, et al. A Novel Approach to High-Quality Postmortem Tissue Procurement: The GTEx Project. Biopreserv Biobank. 2015, 13;(5):311–9. Describes criteria to use for consent forms in the collection of post-mortem tissue for research purposes. The article also outlines implementation of a network for successful acquisition and dissemination of post-mortem tissue samples

  57. http://www.bbmri-eric.eu/wp-content/uploads/2017/02/2017_Newsletter6_7_WEB.pdf

  58. Vaught Jim. The International Scene in 2016: Biopreservation and biobanking. ISBER.

Download references

Acknowledgements

We would like to acknowledge Raymond Lenhoff Ph.D. for his expert advice and edits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanavaz Nasarabadi.

Additional information

This article is part of the Topical Collection on Precision Medicine and Pharmacogenomics

Electronic supplementary material

ESM 1

(DOCX 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasarabadi, S., Hogan, M. & Nelson, J. Biobanking in Precision Medicine. Curr Pharmacol Rep 4, 91–101 (2018). https://doi.org/10.1007/s40495-018-0123-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-018-0123-8

Keywords

Navigation