Quantitative Biology

, Volume 6, Issue 1, pp 15–29 | Cite as

Noise transmission during the dynamic pattern formation in fly embryos




Developmental patterning is highly reproducible and accurate at the single-cell level during fly embryogenesis despite the gene expression noise and external perturbations such as the variation of the embryo length, temperature and genes. To reveal the underlying mechanism, it is very important to characterize the noise transmission during the dynamic pattern formation. Two hypotheses have been proposed. The “channel” scenario requires a highly reproducible input and an accurate interpretation by downstream genes. In contrast, the “filter” scenario proposes a noisy input and a noise filter via the cross-regulation of the downstream network. It has been under great debates which scenario the fly embryogenesis follows.


The first 3-h developmental patterning of fly embryos is orchestrated by a hierarchical segmentation gene network, which rewires upon the maternal to zygotic transition. Starting from the highly reproducible maternal gradients, the positional information is refined to the single-cell precision through the highly dynamical evolved zygotic gene expression profiles. Thus the fly embryo development might strictly fit into neither the originally proposed “filter” nor “channel” scenario. The controversy that which scenario the fly embryogenesis follows could be further clarified by combining quantitative measurements and modeling.


Fly embryos have become one of the perfect model systems for quantitative systems biology studies. The underlying mechanism discovered from fly embryogenesis will deepen our understanding of the noise control of the gene network, facilitate searching for more efficient and safer methods for cell programming and reprogramming, and have the great potential for tissue engineering and regenerative medicine.


pattern formation gene regulatory network noise embryogenesis Drosophila 



The authors are grateful for the two reviewers for helpful suggestions. We apologize to our colleagues whose work could not be cited due to the page limits. This project is supported by the National Natural Science Foundation of China (No.31670852) and 100-talent plan of Peking University. The Drosophila lab used in this project is supported by Peking-Tsinghua Center for Life Sciences.


  1. 1.
    Gregor, T., Tank, D. W., Wieschaus, E. F. and Bialek, W. (2007) Probing the limits to positional information. Cell, 130, 153–164CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gregor, T., Wieschaus, E. F., McGregor, A. P., Bialek, W. and Tank, D. W. (2007) Stability and nuclear dynamics of the bicoid morphogen gradient. Cell, 130, 141–152CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Namba, R., Pazdera, T. M., Cerrone, R. L. and Minden, J. S. (1997) Drosophila embryonic pattern repair: how embryos respond to bicoid dosage alteration. Development, 124, 1393–1403PubMedGoogle Scholar
  4. 4.
    Vincent, A., Blankenship, J. T. and Wieschaus, E. (1997) Integration of the head and trunk segmentation systems controls cephalic furrow formation in Drosophila. Development, 124, 3747–3754PubMedGoogle Scholar
  5. 5.
    Liu, F., Morrison, A. H. and Gregor, T. (2013) Dynamic interpretation of maternal inputs by the Drosophila segmentation gene network. Proc. Natl. Acad. Sci. USA, 110, 6724–6729CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Eldar, A. and Elowitz, M. B. (2010) Functional roles for noise in genetic circuits. Nature, 467, 167–173CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Elowitz, M. B., Levine, A. J., Siggia, E. D. and Swain, P. S. (2002) Stochastic gene expression in a single cell. Science, 297, 1183–1186CrossRefPubMedGoogle Scholar
  8. 8.
    Ghodsi, Z., Hassani, H. and McGhee, K. (2015) Mathematical approaches in studying bicoid gene. Quant. Biol., 3, 182–192.CrossRefGoogle Scholar
  9. 9.
    Gregor, T., Garcia, H. G. and Little, S. C. (2014) The embryo as a laboratory: quantifying transcription in Drosophila. Trends Genet., 30, 364–375CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Rogers, K.W. and Schier, A. F. (2011) Morphogen gradients: from generation to interpretation. Annu. Rev. Cell Dev. Biol., 27, 377–407CrossRefPubMedGoogle Scholar
  11. 11.
    Porcher, A. and Dostatni, N. (2010) The bicoid morphogen system. Curr. Biol., 20, R249–R254CrossRefPubMedGoogle Scholar
  12. 12.
    Jaeger, J. (2011) The gap gene network. Cell. Mol. Life Sci., 68, 243–274CrossRefPubMedGoogle Scholar
  13. 13.
    Jaeger, J. (2009) Modelling the Drosophila embryo. Mol. Biosyst., 5, 1549–1568CrossRefPubMedGoogle Scholar
  14. 14.
    Farrell, J. A. and O’Farrell, P. H. (2014) From egg to gastrula: how the cell cycle is remodeled during the Drosophila mid-blastula transition. Annu. Rev. Genet., 48, 269–294CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Driever, W. and Nüsslein-Volhard, C. (1988) A gradient of bicoid protein in Drosophila embryos. Cell, 54, 83–93CrossRefPubMedGoogle Scholar
  16. 16.
    Driever, W. and Nüsslein-Volhard, C. (1988) The bicoid protein determines position in the Drosophila embryo in a concentrationdependent manner. Cell, 54, 95–104CrossRefPubMedGoogle Scholar
  17. 17.
    Irish, V., Lehmann, R. and Akam, M. (1989) The Drosophila posterior-group gene nanos functions by repressing hunchback activity. Nature, 338, 646–648CrossRefPubMedGoogle Scholar
  18. 18.
    Dubuis, J. O., Samanta, R. and Gregor, T. (2013) Accurate measurements of dynamics and reproducibility in small genetic networks. Mol. Syst. Biol., 9, 639CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Surkova, S., Myasnikova, E., Kozlov, K. N., Pisarev, A., Reinitz, J. and Samsonova, M. (2013) Quantitative imaging of gene expression in Drosophila embryos. Cold Spring Harb. Protoc., 2013, 488–497PubMedGoogle Scholar
  20. 20.
    Little, S. C., Tkacik, G., Kneeland, T. B., Wieschaus, E. F. and Gregor, T. (2011) The formation of the bicoid morphogen gradient requires protein movement from anteriorly localized mRNA. PLoS Biol., 9, e1000596CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Grimm, O., Coppey, M. and Wieschaus, E. (2010) Modelling the bicoid gradient. Development, 137, 2253–2264CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Berezhkovskii, A. M., Sample, C. and Shvartsman, S. Y. (2010) How long does it take to establish a morphogen gradient? Biophys. J., 99, L59–L61Google Scholar
  23. 23.
    Drocco, J. A., Grimm, O., Tank, D. W. and Wieschaus, E. (2011) Measurement and perturbation of morphogen lifetime: effects on gradient shape. Biophys. J., 101, 1807–1815CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Liu, J., He, F. and Ma, J. (2011) Morphogen gradient formation and action: insights from studying bicoid protein degradation. Fly (Austin), 5, 242–246CrossRefGoogle Scholar
  25. 25.
    Abu-Arish, A., Porcher, A., Czerwonka, A., Dostatni, N. and Fradin, C. (2010) High mobility of bicoid captured by fluorescence correlation spectroscopy: implication for the rapid establishment of its gradient. Biophys. J., 99, L33–L35CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Liu, J. and Ma, J. (2013) Uncovering a dynamic feature of the transcriptional regulatory network for anterior–posterior patterning in the Drosophila embryo. PLoS One, 8, e62641CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Margolis, J. S., Borowsky, M. L., Steingrímsson, E., Shim, C. W., Lengyel, J. A. and Posakony, J. W. (1995) Posterior stripe expression of hunchback is driven from two promoters by a common enhancer element. Development, 121, 3067–3077PubMedGoogle Scholar
  28. 28.
    Lopes, F. J., Vieira, F. M., Holloway, D. M., Bisch, P. M. and Spirov, A. V. (2008) Spatial bistability generates hunchback expression sharpness in the Drosophila embryo. PLoS Comput. Biol., 4, e1000184CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hülskamp, M., Lukowitz, W., Beermann, A., Glaser, G. and Tautz, D. (1994) Differential regulation of target genes by different alleles of the segmentation gene hunchback in Drosophila. Genetics, 138, 125–134PubMedPubMedCentralGoogle Scholar
  30. 30.
    Schröder, C., Tautz, D., Seifert, E. and Jäckle, H. (1988) Differential regulation of the two transcripts from the Drosophila gap segmentation gene hunchback. EMBO J., 7, 2881–2887PubMedPubMedCentralGoogle Scholar
  31. 31.
    Perry, M. W., Bothma, J. P., Luu, R. D. and Levine, M. (2012) Precision of hunchback expression in the Drosophila embryo. Curr. Biol., 22, 2247–2252CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Surkova, S., Golubkova, E., Manu, L., Panok, L., Mamon, J., Reinitz, M. and Samsonova (2013) Quantitative dynamics and increased variability of segmentation gene expression in the Drosophila Krüppel and knirps mutants. Dev. Biol., 376, 99–112CrossRefPubMedGoogle Scholar
  33. 33.
    Perry, M. W., Boettiger, A. N. and Levine, M. (2011) Multiple enhancers ensure precision of gap gene-expression patterns in the Drosophila embryo. Proc. Natl. Acad. Sci. USA, 108, 13570–13575CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lehmann, R. and Nüsslein-Volhard, C. (1987) hunchback, a gene required for segmentation of an anterior and posterior region of the Drosophila embryo. Dev. Biol., 119, 402–417CrossRefPubMedGoogle Scholar
  35. 35.
    Petkova, M. D., Tkacik, G., Bialek, W., Wieschaus, E. F. and Gregor, T. (2016) Optimal decoding of information from a genetic network. arXiv:161208084Google Scholar
  36. 36.
    Petkova, M. D., Little, S. C., Liu, F. and Gregor, T. (2014) Maternal origins of developmental reproducibility. Curr. Biol., 24, 1283–1288CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wolpert, L. (1969) Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol., 25, 1–47CrossRefPubMedGoogle Scholar
  38. 38.
    He, F., Wen, Y., Deng, J., Lin, X., Lu, L. J., Jiao, R. and Ma, J. (2008) Probing intrinsic properties of a robust morphogen gradient in Drosophila. Dev. Cell, 15, 558–567CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Houchmandzadeh, B., Wieschaus, E. and Leibler, S. (2002) Establishment of developmental precision and proportions in the early Drosophila embryo. Nature, 415, 798–802CrossRefPubMedGoogle Scholar
  40. 40.
    Jaeger, J., Surkova, S., Blagov, M., Janssens, H., Kosman, D., Kozlov, K. N., Manu, E., Myasnikova, C. E., Vanario-Alonso, M., Samsonova, M, et al. (2004) Dynamic control of positional information in the early Drosophila embryo. Nature, 430, 368–371CrossRefPubMedGoogle Scholar
  41. 41.
    Manu, Surkova, S., Spirov, A. V., Gursky, V. V., Janssens, H., Kim, A. R., Radulescu, O., Vanario-Alonso, C. E., Sharp, D. H., Samsonova, M., et al. (2009) Canalization of gene expression in the Drosophila blastoderm by gap gene cross regulation. PLoS Biol., 7, e1000049CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Green, J. B. and Sharpe, J. (2015) Positional information and reaction-diffusion: two big ideas in developmental biology combine. Development, 142, 1203–1211CrossRefPubMedGoogle Scholar
  43. 43.
    Turing, A. M. (1952) The chemical basis of morphogenesis. Philosoph. Trans. Royal Soc. London, 237, 37–72CrossRefGoogle Scholar
  44. 44.
    Gregor, T., Bialek, W., de Ruyter van Steveninck, R. R., Tank, D. W. and Wieschaus, E. F. (2005) Diffusion and scaling during early embryonic pattern formation. Proc. Natl. Acad. Sci. USA, 102, 18403–18407CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Grimm, O. and Wieschaus, E. (2010) The bicoid gradient is shaped independently of nuclei. Development, 137, 2857–2862CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Cheung, D., Miles, C., Kreitman, M. and Ma, J. (2011) Scaling of the bicoid morphogen gradient by a volume-dependent production rate. Development, 138, 2741–2749CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    He, F., Wei, C., Wu, H., Cheung, D., Jiao, R. and Ma, J. (2015) Fundamental origins and limits for scaling a maternal morphogen gradient. Nat. Commun., 6, 6679CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    de Lachapelle, A. M. and Bergmann, S. (2010) Precision and scaling in morphogen gradient read-out. Mol. Syst. Biol., 6, 351PubMedGoogle Scholar
  49. 49.
    Bergmann, S., Sandler, O., Sberro, H., Shnider, S., Schejter, E., Shilo, B.-Z. and Barkai, N. (2007) Pre-steady-state decoding of the bicoid morphogen gradient. PLoS Biol., 5, e46CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Jaeger, J. (2010) A matter of timing and precision. Mol. Syst. Biol., 6, 427CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Houchmandzadeh, B., Wieschaus, E. and Leibler, S. (2005) Precise domain specification in the developing Drosophila embryo. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 72, 061920CrossRefPubMedGoogle Scholar
  52. 52.
    Howard, M. and ten Wolde, P. R. (2005) Finding the center reliably: robust patterns of developmental gene expression. Phys. Rev. Lett., 95, 208103CrossRefPubMedGoogle Scholar
  53. 53.
    Cheung, D. and Ma, J. (2015) Probing the impact of temperature on molecular events in a developmental system. Sci. Rep., 5, 13124CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kuntz, S. G. and Eisen, M. B. (2014) Drosophila embryogenesis scales uniformly across temperature in developmentally diverse species. PLoS Genet., 10, e1004293CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Lucchetta, E. M., Lee, J. H., Fu, L. A., Patel, N. H. and Ismagilov, R. F. (2005) Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature, 434, 1134–1138CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Lucchetta, E. M., Vincent, M. E. and Ismagilov, R. F. (2008) A precise bicoid gradient is nonessential during cycles 11–13 for precise patterning in the Drosophila blastoderm. PLoS One, 3, e3651CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Lucchetta, E. M., Carthew, R. W. and Ismagilov, R. F. (2009) The endo-siRNA pathway is essential for robust development of the Drosophila embryo. PLoS One, 4, e7576CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Crauk, O. and Dostatni, N. (2005) bicoid determines sharp and precise target gene expression in the Drosophila embryo. Curr. Biol., 15, 1888–1898CrossRefPubMedGoogle Scholar
  59. 59.
    Kugler, J.-M. and Lasko, P. (2009) Localization, anchoring and translational control of oskar, gurken, bicoid and nanos mRNA during Drosophila oogenesis. Fly (Austin), 3, 15–28CrossRefGoogle Scholar
  60. 60.
    Aegerter-Wilmsen, T., Aegerter, C. M. and Bisseling, T. (2005) Model for the robust establishment of precise proportions in the early Drosophila embryo. J. Theor. Biol., 234, 13–19CrossRefPubMedGoogle Scholar
  61. 61.
    Garcia, H. G., Tikhonov, M., Lin, A. and Gregor, T. (2013) Quantitative imaging of transcription in living Drosophila embryos links polymerase activity to patterning. Curr. Biol., 23, 2140–2145CrossRefPubMedGoogle Scholar
  62. 62.
    Lucas, T., Ferraro, T., Roelens, B., De Las Heras Chanes, J., Walczak, A. M., Coppey, M. and Dostatni, N. (2013) Live imaging of bicoid-dependent transcription in Drosophila embryos. Curr. Biol., 23, 2135–2139CrossRefPubMedGoogle Scholar
  63. 63.
    Xu, H., Sepúlveda, L. A., Figard, L., Sokac, A. M. and Golding, I. (2015) Combining protein and mRNA quantification to decipher transcriptional regulation. Nat. Methods, 12, 739–742CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Little, S. C., Tikhonov, M. and Gregor, T. (2013) Precise developmental gene expression arises from globally stochastic transcriptional activity. Cell, 154, 789–800CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Garcia, H. G., Tikhonov, M., Lin, A. and Gregor, T. (2013) Quantitative imaging of transcription in living Drosophila embryos links polymerase activity to patterning. Curr. Biol., 23, 2140–2145CrossRefPubMedGoogle Scholar
  66. 66.
    Golding, I., Paulsson, J., Zawilski, S. M. and Cox, E. C. (2005) Real-time kinetics of gene activity in individual bacteria. Cell, 123, 1025–1036CrossRefPubMedGoogle Scholar
  67. 67.
    Reeves, G. T., Trisnadi, N., Truong, T. V., Nahmad, M., Katz, S. and Stathopoulos, A. (2012) Dorsal-ventral gene expression in the Drosophila embryo reflects the dynamics and precision of the dorsal nuclear gradient. Dev. Cell, 22, 544–557CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Giepmans, B. N., Adams, S. R., Ellisman, M. H., Tsien, R. Y (2006) The fluorescent toolbox for assessing protein location and function. Science, 312, 217–224CrossRefPubMedGoogle Scholar
  69. 69.
    Myasnikova, E., Samsonova, A., Kozlov, K., Samsonova, M. and Reinitz, J. (2001) Registration of the expression patterns of Drosophila segmentation genes by two independent methods. Bioinformatics, 17, 3–12CrossRefPubMedGoogle Scholar
  70. 70.
    Blythe, S. A. and Wieschaus, E. F. (2016) Establishment and maintenance of heritable chromatin structure during early Drosophila embryogenesis. eLife, 5, 5CrossRefGoogle Scholar
  71. 71.
    Fowlkes, C. C., Hendriks, C. L. L., Keränen, S. V., Weber, G. H., Rübel, O., Huang, M.-Y., Chatoor, S., DePace, A. H., Simirenko, L., Henriquez, C., et al. (2008) A quantitative spatiotemporal atlas of gene expression in the Drosophila blastoderm. Cell, 133, 364–374CrossRefPubMedGoogle Scholar
  72. 72.
    Surkova, S., Kosman, D., Kozlov, K., Manu, E., Myasnikova, A. A., Samsonova, A., Spirov, C. E., Vanario-Alonso, M., Samsonova, J. and Reinitz (2008) Characterization of the Drosophila segment determination morphome. Dev. Biol., 313, 844–862CrossRefPubMedGoogle Scholar
  73. 73.
    Barrangou, R. (2014) RNA events. Cas9 targeting and the CRISPR revolution. Science, 344, 707–708PubMedGoogle Scholar
  74. 74.
    Bassett, A. R. and Liu, J.-L. (2014) CRISPR/Cas9 and genome editing in Drosophila. J. Genet. Genomics, 41, 7–19CrossRefPubMedGoogle Scholar
  75. 75.
    Papatsenko, D. and Levine, M. (2011) The Drosophila gap gene network is composed of two parallel toggle switches. PLoS One, 6, e21145CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Bertrand, E., Chartrand, P., Schaefer, M., Shenoy, S. M., Singer, R. H. and Long, R. M. (1998) Localization of ASH1 mRNA particles in living yeast. Mol. Cell, 2, 437–445CrossRefPubMedGoogle Scholar
  77. 77.
    Bothma, J. P., Garcia, H. G., Esposito, E., Schlissel, G., Gregor, T. and Levine, M. (2014) Dynamic regulation of eve stripe 2 expression reveals transcriptional bursts in living Drosophila embryos. Proc. Natl. Acad. Sci. USA, 111, 10598–10603CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Keller, P. J. (2013) Imaging morphogenesis: technological advances and biological insights. Science, 340, 1234168CrossRefPubMedGoogle Scholar
  79. 79.
    Stegmaier, J., Amat, F., Lemon, W. C., McDole, K., Wan, Y., Teodoro, G., Mikut, R. and Keller, P. J. (2016) Real-time threedimensional cell segmentation in large-scale microscopy data of developing embryos. Dev. Cell, 36, 225–240CrossRefPubMedGoogle Scholar
  80. 80.
    Ji, N., Milkie, D. E. and Betzig, E. (2010) Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat. Methods, 7, 141–147CrossRefPubMedGoogle Scholar
  81. 81.
    Huang, A., Amourda, C., Zhang, S., Tolwinski, N. S., and Saunders, T. E. (2017) Decoding temporal interpretation of the morphogen bicoid in the early Drosophila embryo. eLife, 6, e26258PubMedPubMedCentralGoogle Scholar
  82. 82.
    Perry, M.W., Boettiger, A. N., Bothma, J. P. and Levine, M. (2010) Shadow enhancers foster robustness of Drosophila gastrulation. Curr. Biol., 20, 1562–1567CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    El-Sherif, E. and Levine, M. (2016) Shadow enhancers mediate dynamic shifts of gap gene expression in the Drosophila embryo. Curr. Biol., 26, 1164–1169CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Lagha, M., Bothma, J. P., Esposito, E., Ng, S., Stefanik, L., Tsui, C., Johnston, J., Chen, K., Gilmour, D. S., Zeitlinger, J., et al. (2013) Paused Pol II coordinates tissue morphogenesis in the Drosophila embryo. Cell, 153, 976–987CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Liu, J. and Ma, J. (2011) Fates-shifted is an F-box protein that targets bicoid for degradation and regulates developmental fate determination in Drosophila embryos. Nat. Cell Biol., 13, 22–29CrossRefPubMedGoogle Scholar
  86. 86.
    Liu, J., Xiao, Y., Zhang, T. and Ma, J. (2016) Time to move on: modeling transcription dynamics during an embryonic transition away from maternal control. Fly (Austin), 10, 101–107CrossRefGoogle Scholar
  87. 87.
    Liu, J. and Ma, J. (2015) Modulation of temporal dynamics of gene transcription by activator potency in the Drosophila embryo. Development, 142, 3781–3790CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Phillips, R. (2015) Theory in biology: Figure 1 or Figure 7? Trends Cell Biol., 25, 723–729CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Estrada, J., Wong, F., DePace, A. and Gunawardena, J. (2016) Information integration and energy expenditure in gene regulation. Cell, 166, 234–244CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Quantitative BiologyPeking UniversityBeijingChina
  2. 2.State Key Laboratory of Nuclear Physics and Technology, School of PhysicsPeking UniversityBeijingChina

Personalised recommendations