Quantitative Biology

, Volume 5, Issue 2, pp 136–142 | Cite as

Current progresses of 3D bioprinting based tissue engineering

  • Zeyu Zhang
  • Xiu-Jie Wang



The shortage of available organs for transplantation is the major obstacle hindering the application of regenerative medicine, and has also become the desperate problem faced by more and more patients nowadays. The recent development and application of 3D printing technique in biological research (bioprinting) has revolutionized the tissue engineering methods, and become a promising solution for tissue regeneration.


In this review, we summarize the current application of bioprinting in producing tissues and organoids, and discuss the future directions and challenges of 3D bioprinting.


Currently, 3D bioprinting is capable to generate patient-specialized bone, cartilage, blood vascular network, hepatic unit and other simple components/tissues, yet pure cell-based functional organs are still desired.



This work is supported by grants 31271349 from the National Natural Science Foundation of China, China 973 Program 2014CB964901 and CAS Strategic Priority Research Program grant XDA01020105.


  1. 1.
    Langer, R. and Vacanti, J. P. (1993) Tissue engineering. Science, 260, 920–926CrossRefPubMedGoogle Scholar
  2. 2.
    Atala, A., Bauer, S. B., Soker, S., Yoo, J. J. and Retik, A. B. (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet, 367, 1241–1246CrossRefPubMedGoogle Scholar
  3. 3.
    Lu, T.-Y., Lin, B., Kim, J., Sullivan, M., Tobita, K., Salama, G. and Yang, L. (2013) Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat. Commun., 4, 2307PubMedCrossRefGoogle Scholar
  4. 4.
    Pati, F., Jang, J., Ha, D. H., Won Kim, S., Rhie, J. W., Shim, J. H., Kim, D. H. and Cho, D. W. (2014) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun., 5, 3935CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Murphy, S. V. and Atala, A. (2014) 3D bioprinting of tissues and organs. Nat. Biotechnol., 32, 773–785CrossRefPubMedGoogle Scholar
  6. 6.
    Giannopoulos, A. A., Mitsouras, D., Yoo, S. J., Liu, P. P., Chatzizisis, Y. S. and Rybicki, F. J. (2016) Applications of 3D printing in cardiovascular diseases. Nat. Rev. Cardiol., 13, 701–718CrossRefPubMedGoogle Scholar
  7. 7.
    Powers, M. K., Lee, B. R. and Silberstein, J. (2016) Threedimensional printing of surgical anatomy. Curr. Opin. Urol., 26, 283–288CrossRefPubMedGoogle Scholar
  8. 8.
    Zopf, D. A., Hollister, S. J., Nelson, M. E., Ohye, R. G. and Green, G. E. (2013) Bioresorbable airway splint created with a threedimensional printer. N. Engl. J. Med., 368, 2043–2045CrossRefPubMedGoogle Scholar
  9. 9.
    Xiao, Z., Tang, F., Tang, J., Yang, H., Zhao, Y., Chen, B., Han, S., Wang, N., Li, X., Cheng, S., et al. (2016) One-year clinical study of NeuroRegen scaffold implantation following scar resection in complete chronic spinal cord injury patients. Sci. China Life Sci., 59, 647–655CrossRefPubMedGoogle Scholar
  10. 10.
    Dababneh, A. B. and Ozbolat, I. T. (2014) Bioprinting technology: a current state-of-the-art review. J. Manuf. Sci. Eng., 136, 061016CrossRefGoogle Scholar
  11. 11.
    Hölzl, K., Lin, S., Tytgat, L., Van Vlierberghe, S., Gu, L. and Ovsianikov, A. (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication, 8, 032002CrossRefPubMedGoogle Scholar
  12. 12.
    Jose, R. R., Rodriguez, M. J., Dixon, T. A., Omenetto, F. and Kaplan, D. L. (2016) Evolution of bioinks and additive manufacturing technologies for 3D bioprinting. ACS Biomater. Sci. Eng., 2, 1662–1678CrossRefGoogle Scholar
  13. 13.
    Fricain, J. C., Schlaubitz, S., Le Visage, C., Arnault, I., Derkaoui, S. M., Siadous, R., Catros, S., Lalande, C., Bareille, R., Renard, M., et al. (2013) A nano-hydroxyapatite—pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering. Biomaterials, 34, 2947–2959CrossRefPubMedGoogle Scholar
  14. 14.
    Lee, C. H., Rodeo, S. A., Fortier, L. A., Lu, C., Erisken, C. and Mao, J. J. (2014) Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep. Sci. Transl. Med., 6, 266ra171CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Yan, Y., Wang, X., Pan, Y., Liu, H., Cheng, J., Xiong, Z., Lin, F., Wu, R., Zhang, R. and Lu, Q. (2005) Fabrication of viable tissueengineered constructs with 3D cell-assembly technique. Biomaterials, 26, 5864–5871CrossRefPubMedGoogle Scholar
  16. 16.
    Ahn, S. H., Lee, H. J., Lee, J. S., Yoon, H., Chun, W. and Kim, G. H. (2015) A novel cell-printing method and its application to hepatogenic differentiation of human adipose stem cell-embedded mesh structures. Sci. Rep., 5, 13427CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mannoor, M. S., Jiang, Z., James, T., Kong, Y. L., Malatesta, K. A., Soboyejo, W. O., Verma, N., Gracias, D. H. and McAlpine, M. C. (2013) 3D printed bionic ears. Nano Lett., 13, 2634–2639CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ng, W. L., Wang, S., Yeong, W. Y. and Naing, M. W. (2016) Skin bioprinting: impending reality or fantasy? Trends Biotechnol., 34, 689–699Google Scholar
  19. 19.
    Koch, L., Deiwick, A., Schlie, S., Michael, S., Gruene, M., Coger, V., Zychlinski, D., Schambach, A., Reimers, K., Vogt, P. M., et al. (2012) Skin tissue generation by laser cell printing. Biotechnol. Bioeng., 109, 1855–1863CrossRefPubMedGoogle Scholar
  20. 20.
    Michael, S., Sorg, H., Peck, C. T., Koch, L., Deiwick, A., Chichkov, B., Vogt, P. M. and Reimers, K. (2013) Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One, 8, e57741CrossRefGoogle Scholar
  21. 21.
    Lee, V., Singh, G., Trasatti, J. P., Bjornsson, C., Xu, X., Tran, T. N., Yoo, S. S., Dai, G. and Karande, P. (2014) Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng. Part C Methods, 20, 473–484CrossRefPubMedGoogle Scholar
  22. 22.
    Norotte, C., Marga, F. S., Niklason, L. E. and Forgacs, G. (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials, 30, 5910–5917CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kolesky, D. B., Homan, K. A., Skylar-Scott, M. A. and Lewis, J. A. (2016) Three-dimensional bioprinting of thick vascularized tissues. Proc. Natl. Acad. Sci. USA, 113, 3179–3184CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Homan, K. A., Kolesky, D. B., Skylar-Scott, M. A., Herrmann, J., Obuobi, H., Moisan, A. and Lewis, J. A. (2016) Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci. Rep., 6, 34845CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Miller, J. S., Stevens, K. R., Yang, M. T., Baker, B. M., Nguyen, D. H., Cohen, D. M., Toro, E., Chen, A. A., Galie, P. A., Yu, X., et al. (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater., 11, 768–774CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kolesky, D. B., Truby, R. L., Gladman, A. S., Busbee, T. A., Homan, K. A. and Lewis, J. A. (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. Weinheim, 26, 3124–3130CrossRefPubMedGoogle Scholar
  27. 27.
    Cui, X., Breitenkamp, K., Finn, M. G., Lotz, M. and D’ Lima, D. D. (2012) Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng. Part A, 18, 1304–1312CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Cui, X. and Boland, T. (2009) Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials, 30, 6221–6227CrossRefPubMedGoogle Scholar
  29. 29.
    Wang, H., Li, Y., Zuo, Y., Li, J., Ma, S. and Cheng, L. (2007) Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/ polyamide composite scaffolds for bone tissue engineering. Biomaterials, 28, 3338–3348CrossRefPubMedGoogle Scholar
  30. 30.
    Keriquel, V., Guillemot, F., Arnault, I., Guillotin, B., Miraux, S., Amédé e, J., Fricain, J. C. and Catros, S. (2010) In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice. Biofabrication, 2, 014101CrossRefPubMedGoogle Scholar
  31. 31.
    Xu, T., Binder, K. W., Albanna, M. Z., Dice, D., Zhao, W., Yoo, J. J. and Atala, A. (2013) Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication, 5, 015001CrossRefPubMedGoogle Scholar
  32. 32.
    Reichert, J. C., Cipitria, A., Epari, D. R., Saifzadeh, S., Krishnakanth, P., Berner, A., Woodruff, M. A., Schell, H., Mehta, M., Schuetz, M. A., et al. (2012) A tissue engineering solution for segmental defect regeneration in load-bearing long bones. Sci. Transl. Med., 4, 141ra93CrossRefGoogle Scholar
  33. 33.
    Sadtler, K., Singh, A., Wolf, M. T., Wang, X., Pardoll, D. M. and Elisseeff, J. H. (2016) Design, clinical translation and immunological response of biomaterials in regenerative medicine. Nat. Rev. Mater., 1, 16040CrossRefGoogle Scholar
  34. 34.
    Chia, H. N. and Wu, B. M. (2015) Recent advances in 3D printing of biomaterials. J. Biol. Eng., 9, 4CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Caliari, S. R. and Burdick, J. A. (2016) A practical guide to hydrogels for cell culture. Nat. Methods, 13, 405–414CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Pereira, R. F. and Bártolo, P. J. (2015) 3D bioprinting of photocrosslinkable hydrogel constructs. J. Appl. Polym. Sci., 132, 42458CrossRefGoogle Scholar
  37. 37.
    Lei, M. and Wang, X. (2016) Biodegradable polymers and stem cells for bioprinting. Molecules, 21, 539CrossRefGoogle Scholar
  38. 38.
    Zhu, W., Ma, X., Gou, M., Mei, D., Zhang, K. and Chen, S. (2016) 3D printing of functional biomaterials for tissue engineering. Curr. Opin. Biotechnol., 40, 103–112CrossRefPubMedGoogle Scholar
  39. 39.
    Ma, X., Qu, X., Zhu, W., Li, Y.-S., Yuan, S., Zhang, H., Liu, J., Wang, P., Lai, C. S. E., Zanella, F., et al. (2016) Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc. Natl. Acad. Sci. USA, 113, 2206–2211CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kang, H. W., Lee, S. J., Ko, I. K., Kengla, C., Yoo, J. J. and Atala, A. (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol., 34, 312–319CrossRefPubMedGoogle Scholar
  41. 41.
    Hoch, E., Tovar, G. E. M. and Borchers, K. (2014) Bioprinting of artificial blood vessels: current approaches towards a demanding goal. Eur. J. Cardiothorac. Surg., 46, 767–778CrossRefPubMedGoogle Scholar
  42. 42.
    Irvine, S. A. and Venkatraman, S. S. (2016) Bioprinting and Differentiation of Stem Cells. Molecules, 21, 1188CrossRefGoogle Scholar
  43. 43.
    Saunders, R. E. and Derby, B. (2014) Inkjet printing biomaterials for tissue engineering: bioprinting. Int. Mater. Rev., 59, 430–448CrossRefGoogle Scholar
  44. 44.
    Zhao, Y., Li, Y., Mao, S., Sun, W. and Yao, R. (2015) The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication, 7, 045002CrossRefPubMedGoogle Scholar
  45. 45.
    Devillard, R., Pagès, E., Correa, M. M., Kériquel, V., Rémy, M., Kalisky, J., Ali, M., Guillotin, B. and Guillemot, F. (2014). Chapter 9 — Cell Patterning by Laser-Assisted Bioprinting. In Methods in Cell Biology, Matthieu, P. and Manuel, T., eds. 159–174. New York: Academic PressGoogle Scholar
  46. 46.
    Wang, X., Ao, Q., Tian, X., Fan, J., Wei, Y., Hou, W., Tong, H. and Bai, S. (2016) 3D bioprinting technologies for hard tissue and organ engineering. Materials (Basel), 9, 802CrossRefGoogle Scholar
  47. 47.
    Yi, H., Ur Rehman, F., Zhao, C., Liu, B. and He, N. (2016) Recent advances in nano scaffolds for bone repair. Bone Res., 4, 16050CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Skardal, A., Mack, D., Kapetanovic, E., Atala, A., Jackson, J. D., Yoo, J. and Soker, S. (2012) Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl. Med., 1, 792–802CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kim, J. J., Hou, L. and Huang, N. F. (2016) Vascularization of three-dimensional engineered tissues for regenerative medicine applications. Acta Biomater., 41, 17–26CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Mandrycky, C., Wang, Z., Kim, K. and Kim, D.-H. (2016) 3D bioprinting for engineering complex tissues. Biotechnol. Adv., 34, 422–434CrossRefPubMedGoogle Scholar
  51. 51.
    Li, S., Xiong, Z., Wang, X., Yan, Y., Liu, H. and Zhang, R. (2009) Direct fabrication of a hybrid cell/hydrogel construct by a doublenozzle assembling technology. J. Bioact. Compat. Polym., 24, 249–265CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2017

Authors and Affiliations

  1. 1.Key Laboratory of Genetic Network Biology, Collaborative Innovation Center of Genetics and Development, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations