Quantitative Biology

, Volume 5, Issue 1, pp 105–109 | Cite as

Whole genome synthesis: from poliovirus to synthetic yeast

  • Junbiao Dai
  • Yizhi Cai
  • Yinjing Yuan
  • Huanming Yang
  • Jef D. Boeke
News and Views
  • 263 Downloads

Notes

Acknowledgements

Work in Dai’s lab was supported by NSFC 31471254 and the Research Fund for the Doctoral Program of Higher Education of China 20110002120055. This work was also supported by the Shenzhen Peacock Team Project (KQTD 2015033117210153).

References

  1. 1.
    DeLisi, C. (2008) Meetings that changed the world: Santa Fe 1986: Human genome baby-steps. Nature, 455, 876–877CrossRefPubMedGoogle Scholar
  2. 2.
    Battelle Technology Partnership Practice, (2011) Economic impact of the Human Genome ProjectGoogle Scholar
  3. 3.
    Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E. and Church, G. M. (2013) RNA-guided human genome engineering via Cas9. Science, 339, 823–826CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang,W., Marraffini, L. A., et al. (2013) Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–823CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hsu, P. D., Lander, E. S. and Zhang, F. (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157, 1262–1278CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sander, J. D. and Joung, J. K. (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol., 32, 347–355CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sliva, A., Yang, H., Boeke, J. D. and Mathews, D. J. (2015) Freedom and responsibility in synthetic genomics: the synthetic yeast project. Genetics, 200, 1021–1028CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Service, R. F. (2013) The life force. Science, 342, 1032–1034CrossRefPubMedGoogle Scholar
  9. 9.
    Wang, H. H., Kim, H., Cong, L., Jeong, J., Bang, D. and Church, G. M. (2012) Genome-scale promoter engineering by coselection MAGE. Nat. Methods, 9, 591–593CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Isaacs, F. J., Carr, P. A., Wang, H. H., Lajoie, M. J., Sterling, B., Kraal, L., Tolonen, A. C., Gianoulis, T. A., Goodman, D. B., Reppas, N. B., et al. (2011) Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science, 333, 348–353CrossRefPubMedGoogle Scholar
  11. 11.
    Lajoie, M. J., Rovner, A. J., Goodman, D. B., Aerni, H.-R., Haimovich, A. D., Kuznetsov, G., Mercer, J. A., Wang, H. H., Carr, P. A., Mosberg, J. A., et al. (2013) Genomically recoded organisms expand biological functions. Science, 342, 357–360CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mandell, D. J., Lajoie, M. J., Mee, M. T., Takeuchi, R., Kuznetsov, G., Norville, J. E., Gregg, C. J., Stoddard, B. L. and Church, G. M. (2015) Biocontainment of genetically modified organisms by synthetic protein design. Nature, 518, 55–60CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rovner, A. J., Haimovich, A. D., Katz, S. R., Li, Z., Grome, M. W., Gassaway, B. M., Amiram, M., Patel, J. R., Gallagher, R. R., Rinehart, J., et al. (2015) Recoded organisms engineered to depend on synthetic amino acids. Nature, 518, 89–93CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ostrov, N., Landon, M., Guell, M., Kuznetsov, G., Teramoto, J., Cervantes, N., Zhou, M., Singh, K., Napolitano, M. G., Moosburner, M., et al. (2016) Design, synthesis, and testing toward a 57-codon genome. Science, 353, 819–822CrossRefPubMedGoogle Scholar
  15. 15.
    Cello, J., Paul, A. V. and Wimmer, E. (2002) Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science, 297, 1016–1018CrossRefPubMedGoogle Scholar
  16. 16.
    Smith, H. O., Hutchison, C. A., Pfannkoch, C. and Venter, J. C. (2003) Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc. Natl. Acad. Sci. USA, 100, 15440–15445CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sanger, F., Coulson, A. R., Friedmann, T., Air, G. M., Barrell, B. G., Brown, N. L., Fiddes, J. C., Hutchison, C. A. III, Slocombe, P. M. and Smith, M. (1978) The nucleotide sequence of bacteriophage phiX174. J. Mol. Biol., 125, 225–246CrossRefPubMedGoogle Scholar
  18. 18.
    Gibson, D. G., Benders, G. A., Andrews-Pfannkoch, C., Denisova, E. A., Baden-Tillson, H., Zaveri, J., Stockwell, T. B., Brownley, A., Thomas, D. W., Algire, M. A., et al. (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science, 319, 1215–1220CrossRefPubMedGoogle Scholar
  19. 19.
    Gibson, D. G., Glass, J. I., Lartigue, C., Noskov, V. N., Chuang, R.-Y., Algire, M. A., Benders, G. A., Montague, M. G., Ma, L., Moodie, M. M., et al. (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 329, 52–56CrossRefPubMedGoogle Scholar
  20. 20.
    Lartigue, C., Vashee, S., Algire, M. A., Chuang, R. -Y., Benders, G. A., Ma, L., Noskov, V. N., Denisova, E. A., Gibson, D. G., Assad-Garcia, N., et al. (2009) Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science, 325, 1693–1696CrossRefPubMedGoogle Scholar
  21. 21.
    Hutchison, C. A., Chuang, R. -Y., Noskov, V. N., Assad-Garcia, N., Deerinck, T. J., Ellisman, M. H., Gill, J., Kannan, K., Karas, B. J., Ma, L., et al. (2016) Design and synthesis of a minimal bacterial genome. Science, 351, aad6253CrossRefPubMedGoogle Scholar
  22. 22.
    Schatz, M. C. and Phillippy, A. M. (2012) The rise of a digital immune system. Gigascience, 1, 4CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kosuri, S., Eroshenko, N., LeProust, E. M., Super, M., Way, J., Li, J. B. and Church, G. M. (2010) Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat. Biotechnol., 28, 1295–1299CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Matzas, M., Stähler, P. F., Kefer, N., Siebelt, N., Boisguérin, V., Leonard, J. T., Keller, A., Stähler, C. F., Häberle, P., Gharizadeh, B., et al. (2010) High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing. Nat. Biotechnol., 28, 1291–1294CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kim, H., Kim, J., Kim, E.-G., Heinz, A. J., Kwon, S. and Chun, H. (2010) Optofluidic in situ maskless lithography of charge selective nanoporous hydrogel for DNA preconcentration. Biomicrofluidics, 4, 043014CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Lin, Q., Jia, B., Mitchell, L. A., Luo, J., Yang, K., Zeller, K. I., Zhang, W., Xu, Z., Stracquadanio, G., Bader, J., et al. (2014) RADOM, an efficient in vivo method for assembling designed DNA fragments up to 10 kb long in Saccharomyces cerevisiae. ACS Synth. Biol. 4, 213–220CrossRefPubMedGoogle Scholar
  27. 27.
    Gibson, D. G., Smith, H. O., Hutchison, C. A., Venter, J. C. and Merryman, C. (2010) Chemical synthesis of the mouse mitochondrial genome. Nat. Methods, 7, 901–903CrossRefPubMedGoogle Scholar
  28. 28.
    Engler, C., Kandzia, R. and Marillonnet, S. (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One, 3, e3647CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Engler, C., Gruetzner, R., Kandzia, R. and Marillonnet, S. (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One, 4, e5553CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Shao, Z., Zhao, H. and Zhao, H. (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res., 37, e16CrossRefPubMedGoogle Scholar
  31. 31.
    Guo, Y., Dong, J., Zhou, T., Auxillos, J., Li, T., Zhang, W., Wang, L., Shen, Y., Luo, Y., Zheng, Y., et al. (2015) YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae. Nucleic Acids Res., 43, e88CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Dymond, J. S., Richardson, S. M., Coombes, C. E., Babatz, T., Muller, H., Annaluru, N., Blake, W. J., Schwerzmann, J.W., Dai, J., Lindstrom, D. L., et al. (2011) Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature, 477, 471–476CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Shen, Y., Stracquadanio, G., Wang, Y., Yang, K., Mitchell, L. A., Xue, Y., Cai, Y., Chen, T., Dymond, J. S., Kang, K., et al. (2016) SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes. Genome Res., 26, 36–49CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Annaluru, N., Muller, H., Mitchell, L. A., Ramalingam, S., Stracquadanio, G., Richardson, S. M., Dymond, J. S., Kuang, Z., Scheifele, L. Z., Cooper, E. M., et al. (2014) Total synthesis of a functional designer eukaryotic chromosome. Science, 344, 55–58CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Mercy, G., Mozziconacci, J., Scolari, V. F., Yang, K., Zhao, G., Thierry, A., Luo, Y., Mitchell, L. A., Shen, M., Shen, Y., et al. (2017) 3D organization of synthetic and scrambled chromosomes. Science, 355, eaaf4597PubMedGoogle Scholar
  36. 36.
    Mitchell, L.A., Wang, A., Stracquadanio, G., Kuang, Z., Wang, X., Richardson, S., Martin, A., Walker, R., Luo, Y., Dai, H., et al. (2017) Synthesis, debugging and consolidation of synthetic chromosomes in yeast: synVI and beyond. Science, 355, eaaf4831PubMedGoogle Scholar
  37. 37.
    Richardson, S. M., Mitchell, L. A., Stracquadanio, G., Yang, K., Dymond, J. S., DiCarlo, J. E., Lee, D., Huang, C. L. V., Chandrasegaran, S., Cai, Y., et al. (2017) Design of a synthetic yeast genome. Science, 355, eaaf4557Google Scholar
  38. 38.
    Shen, Y., Wang, Y., Chen, T., Gao, F., Gong, J., Abramczyk, D., Walker, R., Zhao, H., Chen, S., Liu, W., et al. (2017) Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome. Science, 355, eaaf4791CrossRefPubMedGoogle Scholar
  39. 39.
    Wu, Y., Li, B. Z., Zhao, M., Mitchell, L.A., Xie, Z.X., Lin, Q. H., Wang, X., Xiao, W. H., Wang, Y., Zhou, X., et al. (2017) Bug mapping and fitness testing of chemically synthesized chromosome X. Science, 355, eaaf4706CrossRefPubMedGoogle Scholar
  40. 40.
    Xie, Z. X., Li, B. Z., Mitchell, L. A., Wu, Y., Qi, X., Jin, Z., Jia, B., Wang, X., Z, B. X., Liu, H. M., et al. (2017) “Perfect” designer chromosome V and behavior of a ring derivative. Science, 355, eaaf4704PubMedGoogle Scholar
  41. 41.
    Zhang, W., Zhao, G., Luo, Z., Lin, Y., Wang, L., Guo, Y., Wang, A., Jiang, S., Jiang, Q., Gong, J., et al. (2017) Engineering the ribosomal DNA in a megabase synthetic chromosome. Science, 355, eaaf3981CrossRefPubMedGoogle Scholar
  42. 42.
    Dymond, J. S., Scheifele, L. Z., Richardson, S., Lee, P., Chandrasegaran, S., Bader, J. S. and Boeke, J. D. (2009) Teaching synthetic biology, bioinformatics and engineering to undergraduates: the interdisciplinary build-a-genome course. Genetics, 181, 13–21CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Mitchell, L. A., Cai, Y., Taylor, M., Noronha, A. M., Chuang, J., Dai, L. and Boeke, J. D. (2013) Multichange isothermal mutagenesis: a new strategy for multiple site-directed mutations in plasmid DNA. ACS Synth. Biol., 2, 473–477CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Mitchell, L. A. and Boeke, J. D. (2014) Circular permutation of a synthetic eukaryotic chromosome with the telomerator. Proc. Natl. Acad. Sci. USA, 111, 17003–17010CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Cai, Y., Agmon, N., Choi, W. J., Ubide, A., Stracquadanio, G., Caravelli, K., Hao, H., Bader, J. S. and Boeke, J. D. (2015) Intrinsic biocontainment: multiplex genome safeguards combine transcriptional and recombinational control of essential yeast genes. Proc. Natl. Acad. Sci. USA, 112, 1803–1808CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    DiCarlo, J. E., Chavez, A., Dietz, S. L., Esvelt, K. M. and Church, G. M. (2015) Safeguarding CRISPR-Cas9 gene drives in yeast. Nat. Biotechnol., 33, 1250–1255CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Gallagher, R. R., Patel, J. R., Interiano, A. L., Rovner, A. J. and Isaacs, F. J. (2015) Multilayered genetic safeguards limit growth of microorganisms to defined environments. Nucleic Acids Res., 43, 1945–1954CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Boeke, J. D., Church, G., Hessel, A., Kelley, N. J., Arkin, A., Cai, Y., Carlson, R., Chakravarti, A., Cornish, V. W., Holt, L., et al. (2016) The Genome Project-Write. Science, 353, 126–127CrossRefPubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2017

Authors and Affiliations

  • Junbiao Dai
    • 1
  • Yizhi Cai
    • 2
  • Yinjing Yuan
    • 3
  • Huanming Yang
    • 4
  • Jef D. Boeke
    • 5
  1. 1.Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
  2. 2.School of Biological Sciences, The King’s BuildingsUniversity of EdinburghEdinburghUK
  3. 3.Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  4. 4.BGI-ShenzhenShenzhenChina
  5. 5.Institute for Systems Genetics and Department of Biochemistry and Molecular PharmacologyNew York University Langone Medical CenterNew YorkUSA

Personalised recommendations