Quantitative Biology

, Volume 5, Issue 1, pp 25–41 | Cite as

Recent advances in molecular machines based on toehold-mediated strand displacement reaction

  • Yijun Guo
  • Bing Wei
  • Shiyan Xiao
  • Dongbao Yao
  • Hui Li
  • Huaguo Xu
  • Tingjie Song
  • Xiang Li
  • Haojun Liang



The DNA strand displacement reaction, which uses flexible and programmable DNA molecules as reaction components, is the basis of dynamic DNA nanotechnology, and has been widely used in the design of complex autonomous behaviors.


In this review, we first briefly introduce the concept of toehold-mediated strand displacement reaction and its kinetics regulation in pure solution. Thereafter, we review the recent progresses in DNA complex circuit, the assembly of AuNPs driven by DNA molecular machines, and the detection of single nucleotide polymorphism (SNP) using DNA toehold exchange probes in pure solution and in interface state. Lastly, the applications of toehold-mediated strand displacement in the genetic regulation and silencing through combining gene circuit with RNA interference systems are reviewed.


The toehold-mediated strand displacement reaction makes DNA an excellent material for the fabrication of molecular machines and complex circuit, and may potentially be used in the disease diagnosis and the regulation of gene silencing in the near future.


toehold-mediated strand displacement DNA molecular machines SNP gene expression regulation 



We would like to thank the National Natural Science Foundation of China (Nos. 91427304, 21434007, 21574122, 51573175, and 21404098), the National Basic Research Program of China (No. 2012CB821500), and the Fundamental Research Funds for the Central Universities (WK3450000002 and WK2060200017) for their financial support.


  1. 1.
    Yurke, B., Turberfield, A. J., Mills, A. P., Simmel, F. C. and Neumann, J. L. (2000) A DNA-fuelled molecular machine made of DNA. Nature, 406, 605–608PubMedCrossRefGoogle Scholar
  2. 2.
    Zhang, D. Y. and Seelig, G. (2011) Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem., 3, 103–113PubMedCrossRefGoogle Scholar
  3. 3.
    Pan, J., Li, F., Cha, T. G., Chen, H. and Choi, J. H. (2015) Recent progress on DNA based walkers. Curr. Opin. Biotechnol., 34, 56–64PubMedCrossRefGoogle Scholar
  4. 4.
    You, M., Peng, L., Shao, N., Zhang, L., Qiu, L., Cui, C. and Tan, W. (2014) DNA “nano-claw”: logic-based autonomous cancer targeting and therapy. J. Am. Chem. Soc., 136, 1256–1259PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Rudchenko, M., Taylor, S., Pallavi, P., Dechkovskaia, A., Khan, S., Butler, V. P., Rudchenko, S. and Stojanovic, M. N. (2013) Autonomous molecular cascades for evaluation of cell surfaces. Nat. Nanotechnol., 8, 580–586PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Andersen, E. S., Dong, M., Nielsen, M. M., Jahn, K., Subramani, R., Mamdouh, W., Golas, M. M., Sander, B., Stark, H., Oliveira, C. L. P., et al. (2009) Self-assembly of a nanoscale DNA box with a controllable lid. Nature, 459, 73–76PubMedCrossRefGoogle Scholar
  7. 7.
    Parolini, L., Kotar, J., Di Michele, L. and Mognetti, B. M. (2016) Controlling self-assembly kinetics of DNA-functionalized liposomes using toehold exchange mechanism. ACS Nano, 10, 2392–2398PubMedCrossRefGoogle Scholar
  8. 8.
    Hellyer, T. J. and Nadeau, J. G. (2004) Strand displacement amplification: a versatile tool for molecular diagnostics. Expert Rev. Mol. Diagn., 4, 251–261PubMedCrossRefGoogle Scholar
  9. 9.
    Kushwaha, M., Rostain, W., Prakash, S., Duncan, J. N. and Jaramillo, A. (2016) Using RNA as molecular code for programming cellular function. ACS Synth. Biol., 5, 795–809PubMedCrossRefGoogle Scholar
  10. 10.
    Green, A. A., Silver, P. A., Collins, J. J. and Yin, P. (2014) Toehold switches: de-novo-designed regulators of gene expression. Cell, 159, 925–939PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Qian, L. and Winfree, E. (2011) Scaling up digital circuit computation with DNA strand displacement cascades. Science, 332, 1196–1201PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Song, T. and Liang, H. (2012) Synchronized assembly of gold nanoparticles driven by a dynamic DNA-fueled molecular machine. J. Am. Chem. Soc., 134, 10803–10806PubMedCrossRefGoogle Scholar
  13. 13.
    Xu, H., Deng, W., Huang, F., Xiao, S., Liu, G. and Liang, H. (2014) Enhanced DNA toehold exchange reaction on a chip surface to discriminate single-base changes. Chem. Commun. (Camb.), 50, 14171–14174CrossRefGoogle Scholar
  14. 14.
    Yao, D., Song, T., Sun, X., Xiao, S., Huang, F. and Liang, H. (2015) Integrating DNA-strand-displacement circuitry with self-assembly of spherical nucleic acids. J. Am. Chem. Soc., 137, 14107–14113PubMedCrossRefGoogle Scholar
  15. 15.
    Song, T., Xiao, S., Yao, D., Huang, F., Hu, M. and Liang, H. (2014) An efficient DNA-fueled molecular machine for the discrimination of single-base changes. Adv. Mater., 26, 6181–6185PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang, D. Y., Turberfield, A. J., Yurke, B. and Winfree, E. (2007) Engineering entropy-driven reactions and networks catalyzed by DNA. Science, 318, 1121–1125PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Zhang, D. Y. and Winfree, E. (2009) Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc., 131, 17303–17314PubMedCrossRefGoogle Scholar
  18. 18.
    Srinivas, N., Ouldridge, T. E., Šulc, P., Schaeffer, J. M., Yurke, B., Louis, A. A., Doye, J. P. K. and Winfree, E. (2013) On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids Res., 41, 10641–10658PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Machinek, R. R. F., Ouldridge, T. E., Haley, N. E. C., Bath, J. and Turberfield, A. J. (2014) Programmable energy landscapes for kinetic control of DNA strand displacement. Nat. Commun., 5, 5324PubMedCrossRefGoogle Scholar
  20. 20.
    Nakayama, S., Yan, L. and Sintim, H. O. (2008) Junction probessequence specific detection of nucleic acids via template enhanced hybridization processes. J. Am. Chem. Soc., 130, 12560–12561PubMedCrossRefGoogle Scholar
  21. 21.
    Xing, Y., Yang, Z. and Liu, D. (2011) A responsive hidden toehold to enable controllable DNA strand displacement reactions. Angew. Chem. Int. Ed. Engl., 50, 11934–11936PubMedCrossRefGoogle Scholar
  22. 22.
    Huang, F., You, M., Han, D., Xiong, X., Liang, H. and Tan, W. (2013) DNA branch migration reactions through photocontrollable toehold formation. J. Am. Chem. Soc., 135, 7967–7973PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Hemphill, J. and Deiters, A. (2013) DNA computation in mammalian cells: microRNA logic operations. J. Am. Chem. Soc., 135, 10512–10518PubMedCrossRefGoogle Scholar
  24. 24.
    Prokup, A., Hemphill, J., Liu, Q. and Deiters, A. (2015) Optically controlled signal amplification for DNA computation. ACS Synth. Biol., 4, 1064–1069PubMedCrossRefGoogle Scholar
  25. 25.
    Amodio, A., Zhao, B., Porchetta, A., Idili, A., Castronovo, M., Fan, C. and Ricci, F. (2014) Rational design of pH-controlled DNA strand displacement. J. Am. Chem. Soc., 136, 16469–16472PubMedCrossRefGoogle Scholar
  26. 26.
    Chen, X. (2012) Expanding the rule set of DNA circuitry with associative toehold activation. J. Am. Chem. Soc., 134, 263–271PubMedCrossRefGoogle Scholar
  27. 27.
    Zhu, J., Zhang, L., Zhou, Z., Dong, S. and Wang, E. (2014) Aptamerbased sensing platform using three-way DNA junction-driven strand displacement and its application in DNA logic circuit. Anal. Chem., 86, 312–316PubMedCrossRefGoogle Scholar
  28. 28.
    Zhu, J., Zhang, L., Dong, S. and Wang, E. (2013) Four-way junctiondriven DNA strand displacement and its application in building majority logic circuit. ACS Nano, 7, 10211–10217PubMedCrossRefGoogle Scholar
  29. 29.
    Genot, A. J., Zhang, D. Y., Bath, J. and Turberfield, A. J. (2011) Remote toehold: a mechanism for flexible control of DNA hybridization kinetics. J. Am. Chem. Soc., 133, 2177–2182PubMedCrossRefGoogle Scholar
  30. 30.
    Bommarito, S., Peyret, N. and SantaLucia, J. Jr (2000) Thermodynamic parameters for DNA sequences with dangling ends. Nucleic Acids Res., 28, 1929–1934PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    SantaLucia, J. and Hicks, D. (2004) The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct., 33, 415–440PubMedCrossRefGoogle Scholar
  32. 32.
    Wang, C., Bae, J. H. and Zhang, D. Y. (2016) Native characterization of nucleic acid motif thermodynamics via non-covalent catalysis. Nat. Commun., 7, 10319PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Protozanova, E., Yakovchuk, P. and Frank-Kamenetskii, M. D. (2004) Stacked-unstacked equilibrium at the nick site of DNA. J. Mol. Biol., 342, 775–785PubMedCrossRefGoogle Scholar
  34. 34.
    Pyshnyi, D. V. and Ivanova, E. M. (2002) Thermodynamic parameters of coaxial stacking on stacking hybridization of oligodeoxyribonucleotides. Russ. Chem. Bull., 51, 1145–1155CrossRefGoogle Scholar
  35. 35.
    Yurke, B. and Mills, A. P. (2003) Using DNA to power nanostructures. Genet. Program. Evolvable Mach., 4, 111–122CrossRefGoogle Scholar
  36. 36.
    Yang, X., Tang, Y., Traynor, S. M. and Li, F. (2016) Regulation of DNA strand displacement using allosteric DNA toehold. J. Am. Chem. Soc., 138, 14076–14082CrossRefGoogle Scholar
  37. 37.
    Khimji, I., Shin, J. and Liu, J. (2013) DNA duplex stabilization in crowded polyanion solutions. Chem. Commun. (Camb.), 49, 1306–1308CrossRefGoogle Scholar
  38. 38.
    Smith, B. D. and Liu, J. (2010) Assembly of DNA-functionalized nanoparticles in alcoholic solvents reveals opposite thermodynamic and kinetic trends for DNA hybridization. J. Am. Chem. Soc., 132, 6300–6301PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang, T., Shang, C., Duan, R., Hakeem, A., Zhang, Z., Lou, X. and Xia, F. (2015) Polar organic solvents accelerate the rate of DNA strand replacement reaction. Analyst, 140, 2023–2028PubMedCrossRefGoogle Scholar
  40. 40.
    Dave, N. and Liu, J. (2010) Fast molecular beacon hybridization in organic solvents with improved target specificity. J. Phys. Chem. B, 114, 15694–15699PubMedCrossRefGoogle Scholar
  41. 41.
    Kang, D., Duan, R., Tan, Y., Hong, F., Wang, B., Chen, Z., Xu, S., Lou, X., Wei, W., Yurke, B. and Xia, F. (2014) Speeding up the selfassembly of a DNA nanodevice using a variety of polar solvents. Nanoscale, 6, 14153–14157PubMedCrossRefGoogle Scholar
  42. 42.
    Wu, L. R., Wang, J. S., Fang, J. Z., Evans, E. R., Pinto, A., Pekker, I., Boykin, R., Ngouenet, C., Webster, P. J., Beechem, J., et al. (2015) Continuously tunable nucleic acid hybridization probes. Nat. Methods, 12, 1191–1196PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Mirkin, C. A., Letsinger, R. L., Mucic, R. C. and Storhoff, J. J. (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 382, 607–609PubMedCrossRefGoogle Scholar
  44. 44.
    Alivisatos, A. P., Johnsson, K. P., Peng, X., Wilson, T. E., Loweth, C. J., Bruchez, M. P. Jr and Schultz, P. G. (1996) Organization of “nanocrystal molecules” using DNA. Nature, 382, 609–611PubMedCrossRefGoogle Scholar
  45. 45.
    Nykypanchuk, D., Maye, M. M., van der Lelie, D. and Gang, O. (2008) DNA-guided crystallization of colloidal nanoparticles. Nature, 451, 549–552PubMedCrossRefGoogle Scholar
  46. 46.
    Park, S. Y., Lytton-Jean, A. K. R., Lee, B., Weigand, S., Schatz, G. C. and Mirkin, C. A. (2008) DNA-programmable nanoparticle crystallization. Nature, 451, 553–556PubMedCrossRefGoogle Scholar
  47. 47.
    Macfarlane, R. J., Jones, M. R., Senesi, A. J., Young, K. L., Lee, B., Wu, J. and Mirkin, C. A. (2010) Establishing the design rules for DNA-mediated programmable colloidal crystallization. Angew. Chem. Int. Ed. Engl., 49, 4589–4592PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    O’Brien, M. N., Jones, M. R., Lee, B. and Mirkin, C. A. (2015) Anisotropic nanoparticle complementarity in DNA-mediated cocrystallization. Nat. Mater., 14, 833–839PubMedCrossRefGoogle Scholar
  49. 49.
    Jones, M. R., Seeman, N. C. and Mirkin, C. A. (2015) Programmable materials and the nature of the DNA bond. Science, 347, 1260901CrossRefGoogle Scholar
  50. 50.
    Sharma, J., Chhabra, R., Cheng, A., Brownell, J., Liu, Y. and Yan, H. (2009) Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science, 323, 112–116PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Shen, X., Song, C., Wang, J., Shi, D., Wang, Z., Liu, N. and Ding, B. (2012) Rolling up gold nanoparticle-dressed DNA origami into threedimensional plasmonic chiral nanostructures. J. Am. Chem. Soc., 134, 146–149PubMedCrossRefGoogle Scholar
  52. 52.
    Lan, X., Lu, X., Shen, C., Ke, Y., Ni, W. and Wang, Q. (2015) Au nanorod helical superstructures with designed chirality. J. Am. Chem. Soc., 137, 457–462PubMedCrossRefGoogle Scholar
  53. 53.
    Tian, Y., Wang, T., Liu, W., Xin, H. L., Li, H., Ke, Y., Shih, W. M. and Gang, O. (2015) Prescribed nanoparticle cluster architectures and lowdimensional arrays built using octahedral DNA origami frames. Nat. Nanotechnol., 10, 637–644PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Liu, W., Halverson, J., Tian, Y., Tkachenko, A. V. and Gang, O. (2016) Self-organized architectures from assorted DNA-framed nanoparticles. Nat. Chem., 8, 867–873PubMedCrossRefGoogle Scholar
  55. 55.
    Rogers, W. B., Shih, W. M. and Manoharan, V. N. (2016) Using DNA to program the self-assembly of colloidal nanoparticles and microparticles. Nat Rev Mater., 1, 16008CrossRefGoogle Scholar
  56. 56.
    Saha, K., Agasti, S. S., Kim, C., Li, X. and Rotello, V. M. (2012) Gold nanoparticles in chemical and biological sensing. Chem. Rev., 112, 2739–2779PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Wilner, O. I. and Willner, I. (2012) Functionalized DNA nanostructures. Chem. Rev., 112, 2528–2556PubMedCrossRefGoogle Scholar
  58. 58.
    Zhao, Y., Chen, F., Li, Q., Wang, L. and Fan, C. (2015) Isothermal amplification of nucleic acids. Chem. Rev., 115, 12491–12545.PubMedCrossRefGoogle Scholar
  59. 59.
    Rosi, N. L. and Mirkin, C. A. (2005) Nanostructures in biodiagnostics. Chem. Rev., 105, 1547–1562PubMedCrossRefGoogle Scholar
  60. 60.
    Liu, J., Cao, Z. and Lu, Y. (2009) Functional nucleic acid sensors. Chem. Rev., 109, 1948–1998PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Wu, P., Hwang, K., Lan, T. and Lu, Y. (2013) A DNAzyme-gold nanoparticle probe for uranyl ion in living cells. J. Am. Chem. Soc., 135, 5254–5257PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Liang, H., Zhang, X.-B., Lv, Y., Gong, L., Wang, R., Zhu, X., Yang, R. and Tan, W. (2014) Functional DNA-containing nanomaterials: cellular applications in biosensing, imaging, and targeted therapy. Acc. Chem. Res., 47, 1891–1901PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B. and Erlich, H. A. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239, 487–491PubMedCrossRefGoogle Scholar
  64. 64.
    Gunderson, K. L., Steemers, F. J., Lee, G., Mendoza, L. G. and Chee, M. S. (2005) A genome-wide scalable SNP genotyping assay using microarray technology. Nat. Genet., 37, 549–554PubMedCrossRefGoogle Scholar
  65. 65.
    Schena, M., Shalon, D., Davis, R. W. and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467–470PubMedCrossRefGoogle Scholar
  66. 66.
    Mardis, E. R. (2008) Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet., 9, 387–402PubMedCrossRefGoogle Scholar
  67. 67.
    Zhang, D. Y., Chen, S. X. and Yin, P. (2012) Optimizing the specificity of nucleic acid hybridization. Nat. Chem., 4, 208–214PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Chen, S. X., Zhang, D. Y. and Seelig, G. (2013) Conditionally fluorescent molecular probes for detecting single base changes in double-stranded DNA. Nat. Chem., 5, 782–789PubMedCrossRefGoogle Scholar
  69. 69.
    Wang, J. S. and Zhang, D. Y. (2015) Simulation-guided DNA probe design for consistently ultraspecific hybridization. Nat. Chem., 7, 545–553PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Chen, S. X. and Seelig, G. (2016) An engineered kinetic amplification mechanism for single nucleotide variant discrimination by DNA hybridization probes. J. Am. Chem. Soc., 138, 5076–5086PubMedCrossRefGoogle Scholar
  71. 71.
    Karim, K., Taylor, J. D., Cullen, D. C., Swann, M. J. and Freeman, N. J. (2007) Measurement of conformational changes in the structure of transglutaminase on binding calcium ions using optical evanescent dual polarisation interferometry. Anal. Chem., 79, 3023–3031PubMedCrossRefGoogle Scholar
  72. 72.
    Mashaghi, A., Swann, M., Popplewell, J., Textor, M. and Reimhult, E. (2008) Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics. Anal. Chem., 80, 3666–3676PubMedCrossRefGoogle Scholar
  73. 73.
    Xu, P., Huang, F. and Liang, H. (2013) Real-time study of a DNA strand displacement reaction using dual polarization interferometry. Biosens. Bioelectron., 41, 505–510PubMedCrossRefGoogle Scholar
  74. 74.
    Tang, W., Wang, D., Xu, Y., Li, N. and Liu, F. (2012) A self-assembled DNA nanostructure-amplified quartz crystal microbalance with dissipation biosensing platform for nucleic acids. Chem. Commun. (Camb.), 48, 6678–6680CrossRefGoogle Scholar
  75. 75.
    Zhao, Y., Wang, H., Tang, W., Hu, S., Li, N. and Liu, F. (2015) An in situ assembly of a DNA-streptavidin dendrimer nanostructure: a new amplified quartz crystal microbalance platform for nucleic acid sensing. Chem. Commun. (Camb.), 51, 10660–10663CrossRefGoogle Scholar
  76. 76.
    Tang, W., Hu, S., Wang, H., Zhao, Y., Li, N. and Liu, F. (2014) A universal molecular translator for non-nucleic acid targets that enables dynamic DNA assemblies and logic operations. Chem. Commun. (Camb.), 50, 14352–14355CrossRefGoogle Scholar
  77. 77.
    Wang, D., Chen, G., Wang, H., Tang, W., Pan, W., Li, N. and Liu, F. (2013) A reusable quartz crystal microbalance biosensor for highly specific detection of single-base DNA mutation. Biosens. Bioelectron., 48, 276–280PubMedCrossRefGoogle Scholar
  78. 78.
    Li, H., Xiao, S., Yao, D., Lam, M. H.-W. and Liang, H. (2015) A smart DNA-gold nanoparticle probe for detecting single-base changes on the platform of a quartz crystal microbalance. Chem. Commun. (Camb.), 51, 4670–4673CrossRefGoogle Scholar
  79. 79.
    Tyagi, S. and Kramer, F. R. (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol., 14, 303–308PubMedCrossRefGoogle Scholar
  80. 80.
    Papadopoulou, E. and Bell, S. E. J. (2011) Label-free detection of single-base mismatches in DNA by surface-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. Engl., 50, 9058–9061PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L. and Mirkin, C. A. (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 277, 1078–1081PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Taton, T. A., Mirkin, C. A. and Letsinger, R. L. (2000) Scanometric DNA array detection with nanoparticle probes. Science, 289, 1757–1760PubMedCrossRefGoogle Scholar
  83. 83.
    Yao, D., Song, T., Zheng, B., Xiao, S., Huang, F. and Liang, H. (2015) The combination of gold nanorods and nanoparticles with DNA nanodevices for logic gates construction. Nanotechnology, 26, 425601PubMedCrossRefGoogle Scholar
  84. 84.
    Yao, D., Li, H., Guo, Y., Zhou, X., Xiao, S. and Liang, H. (2016) A pH-responsive DNA nanomachine-controlled catalytic assembly of gold nanoparticles. Chem. Commun. (Camb.), 52, 7556–7559CrossRefGoogle Scholar
  85. 85.
    Hobom, B. (1980) Surgery of genes — at the doorstep of synthetic biology. Med. Klin., 75, 14–21Google Scholar
  86. 86.
    Gardner, T. S., Cantor, C. R. and Collins, J. J. (2000) Construction of a genetic toggle switch in Escherichia coli. Nature, 403, 339–342PubMedCrossRefGoogle Scholar
  87. 87.
    Elowitz, M. B. and Leibler, S. (2000) A synthetic oscillatory network of transcriptional regulators. Nature, 403, 335–338PubMedCrossRefGoogle Scholar
  88. 88.
    Friedland, A. E., Lu, T. K., Wang, X., Shi, D., Church, G. and Collins, J. J. (2009) Synthetic gene networks that count. Science, 324, 1199–1202PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Ausländer, S., Ausländer, D., Müller, M., Wieland, M. and Fussenegger, M. (2012) Programmable single-cell mammalian biocomputers. Nature, 487, 123–127PubMedCrossRefGoogle Scholar
  90. 90.
    Moon, T. S., Lou, C., Tamsir, A., Stanton, B. C. and Voigt, C. A. (2012) Genetic programs constructed from layered logic gates in single cells. Nature, 491, 249–253PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Siuti, P., Yazbek, J. and Lu, T. K. (2013) Synthetic circuits integrating logic and memory in living cells. Nat. Biotechnol., 31, 448–452PubMedCrossRefGoogle Scholar
  92. 92.
    Win, M. N. and Smolke, C. D. (2008) Higher-order cellular information processing with synthetic RNA devices. Science, 322, 456–460PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Hong, S. H., Ntai, I., Haimovich, A. D., Kelleher, N. L., Isaacs, F. J. and Jewett, M. C. (2014) Cell-free protein synthesis from a release factor 1 deficient Escherichia coli activates efficient and multiple sitespecific nonstandard amino acid incorporation. ACS Synth. Biol., 3, 398–409PubMedCrossRefGoogle Scholar
  94. 94.
    Karzbrun, E., Tayar, A. M., Noireaux, V. and Bar-Ziv, R. H. (2014) Programmable on-chip DNA compartments as artificial cells. Science, 345, 829–832PubMedCrossRefGoogle Scholar
  95. 95.
    Sun, Z. Z., Yeung, E., Hayes, C. A., Noireaux, V. and Murray, R. M. (2014) Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system. ACS Synth. Biol., 3, 387–397PubMedCrossRefGoogle Scholar
  96. 96.
    Takahashi, M. K., Chappell, J., Hayes, C. A., Sun, Z. Z., Kim, J., Singhal, V., Spring, K. J., Al-Khabouri, S., Fall, C. P., Noireaux, V., et al. (2015) Rapidly characterizing the fast dynamics of RNA genetic circuitry with cell-free transcription-translation (TX-TL) systems. ACS Synth. Biol., 4, 503–515PubMedCrossRefGoogle Scholar
  97. 97.
    Pardee, K., Green, A. A., Ferrante, T., Cameron, D. E., DaleyKeyser, A., Yin, P. and Collins, J. J. (2014) Paper-based synthetic gene networks. Cell, 159, 940–954PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Pardee, K., Green, A. A., Takahashi, M. K., Braff, D., Lambert, G., Lee, J. W., Ferrante, T., Ma, D., Donghia, N., Fan, M., et al. (2016) Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell, 165, 1255–1266PubMedCrossRefGoogle Scholar
  99. 99.
    Hannon, G. J. and Rossi, J. J. (2004) Unlocking the potential of the human genome with RNA interference. Nature, 431, 371–378PubMedCrossRefGoogle Scholar
  100. 100.
    Wiznerowicz, M., Szulc, J. and Trono, D. (2006) Tuning silence: conditional systems for RNA interference. Nat. Methods, 3, 682–688PubMedCrossRefGoogle Scholar
  101. 101.
    Beisel, C. L., Bayer, T. S., Hoff, K. G. and Smolke, C. D. (2008) Model-guided design of ligand-regulated RNAi for programmable control of gene expression. Mol. Syst. Biol., 4, 224PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Masu, H., Narita, A., Tokunaga, T., Ohashi, M., Aoyama, Y. and Sando, S. (2009) An activatable siRNA probe: trigger-RNAdependent activation of RNAi function. Angew. Chem. Int. Ed. Engl., 48, 9481–9483PubMedCrossRefGoogle Scholar
  103. 103.
    Kumar, D., Kim, S. H. and Yokobayashi, Y. (2011) Combinatorially inducible RNA interference triggered by chemically modified oligonucleotides. J. Am. Chem. Soc., 133, 2783–2788PubMedCrossRefGoogle Scholar
  104. 104.
    Kumar, D., An, C.-I. and Yokobayashi, Y. (2009) Conditional RNA interference mediated by allosteric ribozyme. J. Am. Chem. Soc., 131, 13906–13907PubMedCrossRefGoogle Scholar
  105. 105.
    Xie, Z., Liu, S. J., Bleris, L. and Benenson, Y. (2010) Logic integration of mRNA signals by an RNAi-based molecular computer. Nucleic Acids Res., 38,2692–2701Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2017

Authors and Affiliations

  • Yijun Guo
    • 1
  • Bing Wei
    • 1
    • 2
  • Shiyan Xiao
    • 1
  • Dongbao Yao
    • 1
  • Hui Li
    • 1
  • Huaguo Xu
    • 3
  • Tingjie Song
    • 1
  • Xiang Li
    • 1
  • Haojun Liang
    • 1
    • 2
  1. 1.CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaHefeiChina
  3. 3.College of Materials and Textile Engineering instituteJiaxing UniversityJiaxingChina

Personalised recommendations