Advertisement

Quantitative Biology

, Volume 5, Issue 2, pp 183–190 | Cite as

HiC-3DViewer: a new tool to visualize Hi-C data in 3D space

  • Mohamed Nadhir Djekidel
  • Mengjie Wang
  • Michael Q. Zhang
  • Juntao Gao
Research Article

Abstract

Background

Although significant progress has been made to map chromatin structure at unprecedented resolution and scales, we are short of tools that enable the intuitive visualization and navigation along the three-dimensional (3D) structure of chromatins. The available tools people have so far are generally script-based or present basic features that do not easily enable the integration of genomic data along with 3D chromatin structure, hence, many scientists find themselves in the obligation to hack tools designed for other purposes such as tools for protein structure study.

Methods

We present HiC-3DViewer, a new browser-based interactive tool designed to provide an intuitive environment for investigators to facilitate the 3D exploratory analysis of Hi-C data along with many useful annotation functionalities. Among the key features of HiC-3DViewer relevant to chromatin conformation studies, the most important one is the 1D-to-2D-to-3D mapping, to highlight genomic regions of interest interactively. This feature enables investigators to explore their data at different levels/angels. Additionally, investigators can superpose different genomic signals (such as ChIP-Seq, SNP) on the top of the 3D structure.

Results

As a proof of principle we applied HiC-3DViewer to investigate the quality of Hi-C data and to show the spatial binding of GATA1 and GATA2 along the genome.

Conclusions

As a user-friendly tool, HiC-3DViewer enables the visualization of inter/intra-chromatin interactions and gives users the flexibility to customize the look-and-feel of the 3D structure with a simple click. HiC-3DViewer is implemented in Javascript and Python, and is freely available at: http://bioinfo.au.tsinghua.edu.cn/member/nadhir/HiC3DViewer/. Supplementary information (User Manual, demo data) is also available at this website.

Keywords

Hi-C 3D genome visualization chromatin structure prediction 

Notes

Acknowledgments

This work is supported by State Key Research Development Program of China (No. 2016YFC1200303), and the National Natural Science Foundation of China (Nos. 31361163004 and 31671383). We thank Yanjian Li (Tsinghua University) for sharing his Hi-C data. MQZ was partially supported by UTD funds.

Supplementary material

40484_2017_91_MOESM1_ESM.pdf (444 kb)
Supplementary material, approximately 443 KB.
40484_2017_91_MOESM2_ESM.pdf (1.1 mb)
HiC-3DViewer: a novel tool to visualize Hi-C data in 3D space (User Manual)

References

  1. 1.
    Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., et al. (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326, 289–293CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Li, G., Ruan, X., Auerbach, R. K., Sandhu, K. S., Zheng, M., Wang, P., Poh, H. M., Goh, Y., Lim, J., Zhang, J., et al. (2012) Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell, 148, 84–98CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sanyal, A., Lajoie, B. R., Jain, G. and Dekker, J. (2012) The long-range interaction landscape of gene promoters. Nature, 489, 109–113CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Göndör, A. and Ohlsson, R. (2009) Chromosome crosstalk in three dimensions. Nature, 461, 212–217CrossRefPubMedGoogle Scholar
  5. 5.
    Varoquaux, N., Ay, F., Noble, W. S. and Vert, J.-P. (2014) A statistical approach for inferring the 3D structure of the genome. Bioinformatics, 30, i26–i33CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Baù, D., Sanyal, A., Lajoie, B. R., Capriotti, E., Byron, M., Lawrence, J. B., Dekker, J. and Marti-Renom, M. A. (2011) The three-dimensional folding of the a-globin gene domain reveals formation of chromatin globules. Nat. Struct. Mol. Biol., 18, 107–114CrossRefPubMedGoogle Scholar
  7. 7.
    Wang, S., Xu, J. and Zeng, J. (2015) Inferential modeling of 3D chromatin structure. Nucleic Acids Res., 43, e54CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Thongjuea, S., Stadhouders, R., Grosveld, F. G., Soler, E. and Lenhard, B. (2013) r3Cseq: an R/Bioconductor package for the discovery of long-range genomic interactions from chromosome conformation capture and next-generation sequencing data. Nucleic Acids Res., 41, e132CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Phanstiel, D. H., Boyle, A. P., Araya, C. L. and Snyder, M. P. (2014) Sushi.R: flexible, quantitative and integrative genomic visualizations for publication-quality multi-panel figures. Bioinformatics, 30, 2808–2810CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Schrödinger, LLC (2010) The PyMOL Molecular Graphics System, Versio1 1.3r1. Available: http://www.pymol.orgGoogle Scholar
  11. 11.
    Nowotny, J., Wells, A., Xu, L., Cao, R., Trieu, T., He, C., Cheng, J. (2016) GMOL: an interactive tool for 3D genome structure visualization. Sci. Rep. 6, 20802CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Asbury, T. M., Mitman, M., Tang, J. and Zheng, W. J. (2010) Genome3D: a viewer-model framework for integrating and visualizing multi-scale epigenomic information within a three-dimensional genome. BMC Bioinformatics, 11, 444CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Peng, C., Fu, L.-Y., Dong, P.-F., Deng, Z.-L., Li, J.-X., Wang, X. T. and Zhang, H. Y. (2013) The sequencing bias relaxed characteristics of Hi-C derived data and implications for chromatin 3D modeling. Nucleic Acids Res., 41, e183CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Teng, L., He, B., Wang, J. and Tan, K. (2015) 4DGenome: a comprehensive database of chromatin interactions. Bioinformatics, 31, 2560–2564CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dirksen, J. (2013) Learning Three.js: The JavaScript 3D Library for WebGL. Birmingham: Packt PublishingGoogle Scholar
  16. 16.
    Grinberg, M. (2014) Flask Web Development. Sebastopol: O’Reilly MediaGoogle Scholar
  17. 17.
    Duan, Z., Andronescu, M., Schutz, K., McIlwain, S., Kim, Y. J., Lee, C., Shendure, J., Fields, S., Blau, C. A. and Noble, W. S. (2010) A three-dimensional model of the yeast genome. Nature, 465, 363–367CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sexton, T., Yaffe, E., Kenigsberg, E., Bantignies, F., Leblanc, B., Hoichman, M., Parrinello, H., Tanay, A. and Cavalli, G. (2012) Threedimensional folding and functional organization principles of the Drosophila genome. Cell, 148, 458–472CrossRefPubMedGoogle Scholar
  19. 19.
    Rao, S. S., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S., et al. (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 159, 1665–1680CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S. and Ren, B. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485, 376–380CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ay, F., Bunnik, E. M., Varoquaux, N., Bol, S. M., Prudhomme, J., Vert, J. P., Noble, W. S. and Le Roch, K. G. (2014) Three-dimensional modeling of the P. falciparum genome during the erythrocytic cycle reveals a strong connection between genome architecture and gene expression. Genome Res., 24, 974–988CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lan, X., Witt, H., Katsumura, K., Ye, Z., Wang, Q., Bresnick, E. H., Farnham, P. J. and Jin, V. X. (2012) Integration of Hi-C and ChIP-seq data reveals distinct types of chromatin linkages. Nucleic Acids Res., 40, 7690–7704CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hu, M., Deng, K., Selvaraj, S., Qin, Z., Ren, B. and Liu, J. S. (2012) HiCNorm: removing biases in Hi-C data via Poisson regression. Bioinformatics, 28, 3131–3133CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2016

Authors and Affiliations

  1. 1.MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, TNLIST; Department of AutomationTsinghua UniversityBeijingChina
  2. 2.School of Pharmaceutical SciencesTsinghua UniversityBeijingChina
  3. 3.Department of Biological Sciences, Center for Systems BiologyThe University of Texas at DallasRichardsonUSA

Personalised recommendations