Quantitative Biology

, Volume 4, Issue 4, pp 283–301 | Cite as

Applications of integrative OMICs approaches to gene regulation studies

  • Jing Qin
  • Bin Yan
  • Yaohua Hu
  • Panwen Wang
  • Junwen Wang



Functional genomics employs dozens of OMICs technologies to explore the functions of DNA, RNA and protein regulators in gene regulation processes. Despite each of these technologies being powerful tools on their own, like the parable of blind men and an elephant, any one single technology has a limited ability to depict the complex regulatory system. Integrative OMICS approaches have emerged and become an important area in biology and medicine. It provides a precise and effective way to study gene regulations.


This article reviews current popular OMICs technologies, OMICs data integration strategies, and bioinformatics tools used for multi-dimensional data integration. We highlight the advantages of these methods, particularly in elucidating molecular basis of biological regulatory mechanisms.


To better understand the complexity of biological processes, we need powerful bioinformatics tools to integrate these OMICs data. Integrating multi-dimensional OMICs data will generate novel insights into system-level gene regulations and serves as a foundation for further hypothesis-driven research.


gene regulatory networks integrative analysis OMICs ChIP-seq RNA-seq 


  1. 1.
    Lee, K. L., Lim, S. K., Orlov, Y. L., Yit, Y., Yang, H., Ang, L. T., Poellinger, L. and Lim, B. (2011) Graded Nodal/Activin signaling titrates conversion of quantitative phospho-Smad2 levels into qualitative embryonic stem cell fate decisions. PLoS Genet., 7, e1002130CrossRefGoogle Scholar
  2. 2.
    Newman, R. H., Hu, J., Rho, H. S., Xie, Z., Woodard, C., Neiswinger, J., Cooper, C., Shirley, M., Clark, H. M., Hu, S., et al. (2013) Construction of human activity-based phosphorylation networks. Mol. Syst. Biol., 9, 655PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Gavin, A. C., Bösche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J. M., Michon, A. M., Cruciat, C. M., et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 415, 141–147PubMedCrossRefGoogle Scholar
  4. 4.
    Fields, S. and Song, O. (1989) A novel genetic system to detect protein-protein interactions. Nature, 340, 245–246PubMedCrossRefGoogle Scholar
  5. 5.
    Chen, T. and Dent, S. Y. (2014) Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat. Rev. Genet., 15, 93–106PubMedCrossRefGoogle Scholar
  6. 6.
    Dekker, J., Marti-Renom, M. A. and Mirny, L. A. (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet., 14, 390–403PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Witten, J. T. and Ule, J. (2011) Understanding splicing regulation through RNA splicing maps. Trends Genet., 27, 89–97PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. andWeissman, J. S. (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science, 324, 218–223PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Geisler, S. and Coller, J. (2013) RNA in unexpected places: long noncoding RNA functions in diverse cellular contexts. Nat. Rev. Mol. Cell Biol., 14, 699–712PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Chen, L. L. (2016) The biogenesis and emerging roles of circular RNAs. Nat. Rev. Mol. Cell Biol., 17, 205–211PubMedCrossRefGoogle Scholar
  11. 11.
    Quinn, J. J., Ilik, I. A., Qu, K., Georgiev, P., Chu, C., Akhtar, A. and Chang, H. Y. (2014) Revealing long noncoding RNA architecture and functions using domain-specific chromatin isolation by RNA purification. Nat. Biotechnol., 32, 933–940PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Di Ruscio, A., Ebralidze, A. K., Benoukraf, T., Amabile, G., Goff, L. A., Terragni, J., Figueroa, M. E., De Figueiredo Pontes, L. L., Alberich-Jorda, M., Zhang, P., et al. (2013) DNMT1-interacting RNAs block gene-specific DNA methylation. Nature, 503, 371–376PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Gómez-Orte, E., Sáenz-Narciso, B., Moreno, S. and Cabello, J. (2013) Multiple functions of the noncanonical Wnt pathway. Trends Genet., 29, 545–553PubMedCrossRefGoogle Scholar
  14. 14.
    Liang, J., Wan, M., Zhang, Y., Gu, P., Xin, H., Jung, S. Y., Qin, J., Wong, J., Cooney, A. J., Liu, D., et al. (2008) Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells. Nat. Cell Biol., 10, 731–739PubMedCrossRefGoogle Scholar
  15. 15.
    Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M. and Sakaki, Y. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA, 98, 4569–4574PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Jain, M., Nilsson, R., Sharma, S., Madhusudhan, N., Kitami, T., Souza, A. L., Kafri, R., Kirschner, M.W., Clish, C. B. and Mootha, V. K. (2012) Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science, 336, 1040–1044PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Park, P. J. (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet., 10, 669–680PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Rhee, H. S. and Pugh, B. F. (2012) ChIP-exo method for identifying genomic location of DNA-binding proteins with near-single-nucleotide accuracy. In Current Protocols In Molecular Biology, Chapter 21, Unit 21–24. WileyGoogle Scholar
  19. 19.
    Lister, R., Pelizzola, M., Dowen, R. H., Hawkins, R. D., Hon, G., Tonti-Filippini, J., Nery, J. R., Lee, L., Ye, Z., Ngo, Q. M., et al. (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462, 315–322PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Ball, M. P., Li, J. B., Gao, Y., Lee, J. H., LeProust, E. M., Park, I. H., Xie, B., Daley, G. Q. and Church, G. M. (2009) Targeted and genomescale strategies reveal gene-body methylation signatures in human cells. Nat. Biotechnol., 27, 361–368PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Pelizzola, M., Koga, Y., Urban, A. E., Krauthammer, M., Weissman, S., Halaban, R. and Molinaro, A. M. (2008) MEDME: an experimental and analytical methodology for the estimation of DNA methylation levels based on microarray derived MeDIP-enrichment. Genome Res., 18, 1652–1659PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Meissner, A., Gnirke, A., Bell, G. W., Ramsahoye, B., Lander, E. S. and Jaenisch, R. (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res., 33, 5868–5877PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Edwards, J. R., O’Donnell, A. H., Rollins, R. A., Peckham, H. E., Lee, C., Milekic, M. H., Chanrion, B., Fu, Y., Su, T., Hibshoosh, H., et al. (2010) Chromatin and sequence features that define the fine and gross structure of genomic methylation patterns. Genome Res., 20, 972–980PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    He, H. H., Meyer, C. A., Hu, S. S., Chen, M. W., Zang, C., Liu, Y., Rao, P. K., Fei, T., Xu, H., Long, H., et al. (2014) Refined DNase-seq protocol and data analysis reveals intrinsic bias in transcription factor footprint identification. Nat. Methods, 11, 73–78PubMedCrossRefGoogle Scholar
  25. 25.
    Auerbach, R. K., Euskirchen, G., Rozowsky, J., Lamarre-Vincent, N., Moqtaderi, Z., Lefrançois, P., Struhl, K., Gerstein, M. and Snyder, M. (2009) Mapping accessible chromatin regions using Sono-Seq. Proc. Natl. Acad. Sci. USA, 106, 14926–14931PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. and Greenleaf, W. J. (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods, 10, 1213–1218PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Gaulton, K. J., Nammo, T., Pasquali, L., Simon, J. M., Giresi, P. G., Fogarty, M. P., Panhuis, T. M., Mieczkowski, P., Secchi, A., Bosco, D., et al. (2010) A map of open chromatin in human pancreatic islets. Nat. Genet., 42, 255–259PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    You, J. S., Kelly, T. K., De Carvalho, D. D., Taberlay, P. C., Liang, G. and Jones, P. A. (2011) OCT4 establishes and maintains nucleosomedepleted regions that provide additional layers of epigenetic regulation of its target genes. Proc. Natl. Acad. Sci. USA, 108, 14497–14502PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Schones, D. E., Cui, K., Cuddapah, S., Roh, T. Y., Barski, A., Wang, Z., Wei, G. and Zhao, K. (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell, 132, 887–898PubMedCrossRefGoogle Scholar
  30. 30.
    Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. andWold, B. (2008) Mapping and quantifying mammalian transcriptomes by RNASeq. Nat. Methods, 5, 621–628PubMedCrossRefGoogle Scholar
  31. 31.
    Schena, M., Shalon, D., Davis, R. W. and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467–470PubMedCrossRefGoogle Scholar
  32. 32.
    Core, L. J., Waterfall, J. J. and Lis, J. T. (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science, 322, 1845–1848PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Chi, S. W., Zang, J. B., Mele, A. and Darnell, R. B. (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature, 460, 479–486PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    German, M. A., Pillay, M., Jeong, D. H., Hetawal, A., Luo, S., Janardhanan, P., Kannan, V., Rymarquis, L. A., Nobuta, K., German, R., et al. (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat. Biotechnol., 26, 941–946PubMedCrossRefGoogle Scholar
  35. 35.
    Helwak, A., Kudla, G., Dudnakova, T. and Tollervey, D. (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell, 153, 654–665PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Ding, Y., Tang, Y., Kwok, C. K., Zhang, Y., Bevilacqua, P. C. and Assmann, S. M. (2014) In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature, 505, 696–700PubMedCrossRefGoogle Scholar
  37. 37.
    Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., Collins, C., Kuo, W. L., Chen, C., Zhai, Y., et al. (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet., 20, 207–211PubMedCrossRefGoogle Scholar
  38. 38.
    Bentley, D. R., Balasubramanian, S., Swerdlow, H. P., Smith, G. P., Milton, J., Brown, C. G., Hall, K. P., Evers, D. J., Barnes, C. L., Bignell, H. R., et al. (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 456, 53–59PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Ng, S. B., Turner, E. H., Robertson, P. D., Flygare, S. D., Bigham, A. W., Lee, C., Shaffer, T., Wong, M., Bhattacharjee, A., Eichler, E. E., et al. (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature, 461, 272–276PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Krüger, M., Moser, M., Ussar, S., Thievessen, I., Luber, C. A., Forner, F., Schmidt, S., Zanivan, S., Füssler, R. and Mann, M. (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell, 134, 353–364PubMedCrossRefGoogle Scholar
  41. 41.
    Kislinger, T., Rahman, K., Radulovic, D., Cox, B., Rossant, J. and Emili, A. (2003) PRISM, a generic large scale proteomic investigation strategy for mammals. Mol. Cell. Proteomics, 2, 96–106PubMedCrossRefGoogle Scholar
  42. 42.
    Zhou, F., Lu, Y., Ficarro, S. B., Adelmant, G., Jiang, W., Luckey, C. J. and Marto, J. A. (2013) Genome-scale proteome quantification by DEEP SEQ mass spectrometry. Nat. Commun., 4, 2171PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Jewison, T., Su, Y., Disfany, F. M., Liang, Y., Knox, C., Maciejewski, A., Poelzer, J., Huynh, J., Zhou, Y., Arndt, D., et al. (2014) SMPDB 2.0: big improvements to the Small Molecule Pathway Database. Nucleic Acids Res., 42, D478–D484PubMedCrossRefGoogle Scholar
  44. 44.
    Song, C., Ye, M., Liu, Z., Cheng, H., Jiang, X., Han, G., Songyang, Z., Tan, Y., Wang, H., Ren, J., et al. (2012) Systematic analysis of protein phosphorylation networks from phosphoproteomic data. Mol. Cell. Proteomics, 11, 1070–1083PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Meissner, A., Mikkelsen, T. S., Gu, H., Wernig, M., Hanna, J., Sivachenko, A., Zhang, X., Bernstein, B. E., Nusbaum, C., Jaffe, D. B., et al. (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature, 454, 766–770PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Neph, S., Vierstra, J., Stergachis, A. B., Reynolds, A. P., Haugen, E., Vernot, B., Thurman, R. E., John, S., Sandstrom, R., Johnson, A. K., et al. (2012) An expansive human regulatory lexicon encoded in transcription factor footprints. Nature, 489, 83–90PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Dunham, I., Kundaje, A., Aldred, S. F., Collins, P. J., Davis, C. A., Doyle, F., Epstein, C. B., Frietze, S., Harrow, J., Kaul, R., et al. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74CrossRefGoogle Scholar
  48. 48.
    Ramaswami, G., Zhang, R., Piskol, R., Keegan, L. P., Deng, P., O’Connell, M. A. and Li, J. B. (2013) Identifying RNA editing sites using RNA sequencing data alone. Nat. Methods, 10, 128–132PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Ramaswami, G., Lin, W., Piskol, R., Tan, M. H., Davis, C. and Li, J. B. (2012) Accurate identification of human Alu and non-Alu RNA editing sites. Nat. Methods, 9, 579–581PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Fu, X. D. and Ares, M. (2014) Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet., 15, 689–701PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Wang, Z., Gerstein, M. and Snyder, M. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 10, 57–63PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Yang, L., Duff, M. O., Graveley, B. R., Carmichael, G. G. and Chen, L. L. (2011) Genomewide characterization of non-polyadenylated RNAs. Genome Biol., 12, R16PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Yang, J. H., Li, J. H., Shao, P., Zhou, H., Chen, Y. Q. and Qu, L. H. (2011) starBase: a database for exploring microRNA–mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res., 39, D202–D209PubMedCrossRefGoogle Scholar
  54. 54.
    Lau, E. (2014) Non-coding RNA: zooming in on lncRNA functions. Nat. Rev. Genet., 15, 574–575PubMedCrossRefGoogle Scholar
  55. 55.
    Venø, M. T., Hansen, T. B., Venø, S. T., Clausen, B. H., Grebing, M., Finsen, B., Holm, I. E. and Kjems, J. (2015) Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol., 16, 245PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Gao, Y., Wang, J. and Zhao, F. (2015) CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol., 16, 4PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Salzman, J., Gawad, C., Wang, P. L., Lacayo, N. and Brown, P. O. (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One, 7, e30733CrossRefGoogle Scholar
  58. 58.
    Qin, Y., Yalamanchili, H.K., Qin, J., Yan, B. and Wang, J. (2015) The current status and challenges in computational analysis of genomic big data. Big data research, 2, 12–18CrossRefGoogle Scholar
  59. 59.
    Kluger, Y., Yu, H., Qian, J. and Gerstein, M. (2003) Relationship between gene co-expression and probe localization on microarray slides. BMC Genomics, 4, 49PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Robasky, K., Lewis, N. E. and Church, G. M. (2014) The role of replicates for error mitigation in next-generation sequencing. Nat. Rev. Genet., 15, 56–62PubMedCrossRefGoogle Scholar
  61. 61.
    Teytelman, L., Thurtle, D. M., Rine, J. and van Oudenaarden, A. (2013) Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proc. Natl. Acad. Sci. USA, 110, 18602–18607PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S. G., Fields, S. and Bork, P. (2002) Comparative assessment of large-scale data sets of protein-protein interactions. Nature, 417, 399–403CrossRefGoogle Scholar
  63. 63.
    El Gazzar, M. and McCall, C. E. (2012) MicroRNAs regulatory networks in myeloid lineage development and differentiation: regulators of the regulators. Immunol. Cell Biol., 90, 587–593PubMedCrossRefGoogle Scholar
  64. 64.
    Hudson, W. H. and Ortlund, E. A. (2014) The structure, function and evolution of proteins that bind DNA and RNA. Nat. Rev. Mol. Cell Biol., 15, 749–760PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W. J. and Pandolfi, P. P. (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 465, 1033–1038PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Hansen, T. B., Jensen, T. I., Clausen, B. H., Bramsen, J. B., Finsen, B., Damgaard, C. K. and Kjems, J. (2013) Natural RNA circles function as efficient microRNA sponges. Nature, 495, 384–388PubMedCrossRefGoogle Scholar
  67. 67.
    modEncode Consortium, Roy, S., Ernst, J.J., Kharchenko, P.V., Kheradpour, P., Negre, N., Eaton, M.L., Landolin, J.M., Bristow, C. A., Ma, L. et al. (2010) Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science, 330, 1787–1797CrossRefGoogle Scholar
  68. 68.
    Nègre, N., Brown, C. D., Ma, L., Bristow, C. A., Miller, S. W., Wagner, U., Kheradpour, P., Eaton, M. L., Loriaux, P., Sealfon, R., et al. (2011) A cis-regulatory map of the Drosophila genome. Nature, 471, 527–531PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Gerstein, M. B., Lu, Z. J., Van Nostrand, E. L., Cheng, C., Arshinoff, B. I., Liu, T., Yip, K. Y., Robilotto, R., Rechtsteiner, A., Ikegami, K., et al. (2010) Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science, 330, 1775–1787PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A., Kheradpour, P., Zhang, Z., Wang, J., Ziller, M. J., et al. (2015) Integrative analysis of 111 reference human epigenomes. Nature, 518, 317–330PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Bell, D., Berchuck, A., Birrer, M., Chien, J., Cramer, D. W., Dao, F., Dhir, R., DiSaia, P., Gabra, H., Glenn, P., et al. (2011) Integrated genomic analyses of ovarian carcinoma. Nature, 474, 609–615CrossRefGoogle Scholar
  72. 72.
    Bass, A. J., Thorsson, V., Shmulevich, I., Reynolds, S. M., Miller, M., Bernard, B., Hinoue, T., Laird, P.W., Curtis, C., Shen, H., et al. (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature, 513, 202–209PubMedCentralCrossRefGoogle Scholar
  73. 73.
    Xu, H., Baroukh, C., Dannenfelser, R., Chen, E.Y., Tan, C. M., Kou, Y., Kim, Y. E., Lemischka, I. R. and Ma’ayan, A. (2013) ESCAPE: database for integrating high-content published data collected from human and mouse embryonic stem cells. Database, 2013, bat045PubMedPubMedCentralGoogle Scholar
  74. 74.
    Marygold, S. J., Leyland, P. C., Seal, R. L., Goodman, J. L., Thurmond, J., Strelets, V. B. and Wilson, R. J., and the FlyBase consortium. (2013) FlyBase: improvements to the bibliography. Nucleic Acids Res., 41, D751–D757PubMedCrossRefGoogle Scholar
  75. 75.
    Costanzo, M. C., Engel, S. R., Wong, E. D., Lloyd, P., Karra, K., Chan, E. T., Weng, S., Paskov, K. M., Roe, G. R., Binkley, G., et al. (2014) Saccharomyces genome database provides new regulation data. Nucleic Acids Res., 42, D717–D725PubMedCrossRefGoogle Scholar
  76. 76.
    Phanstiel, D. H., Brumbaugh, J., Wenger, C. D., Tian, S., Probasco, M. D., Bailey, D. J., Swaney, D. L., Tervo, M. A., Bolin, J. M., Ruotti, V., et al. (2011) Proteomic and phosphoproteomic comparison of human ES and iPS cells. Nat. Methods, 8, 821–827PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Swarbreck, D., Wilks, C., Lamesch, P., Berardini, T. Z., Garcia- Hernandez, M., Foerster, H., Li, D., Meyer, T., Muller, R., Ploetz, L., et al. (2008) The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Res., 36, D1009–D1014PubMedCrossRefGoogle Scholar
  78. 78.
    Suzuki, A., Wakaguri, H., Yamashita, R., Kawano, S., Tsuchihara, K., Sugano, S., Suzuki, Y. and Nakai, K. (2015) DBTSS as an integrative platform for transcriptome, epigenome and genome sequence variation data. Nucleic Acids Res., 43, D87–D91PubMedCrossRefGoogle Scholar
  79. 79.
    Sun, H., Wang, H., Zhu, R., Tang, K., Gong, Q., Cui, J., Cao, Z. and Liu, Q. (2014) iPEAP: integrating multiple omics and genetic data for pathway enrichment analysis. Bioinformatics, 30, 737–739PubMedCrossRefGoogle Scholar
  80. 80.
    Bebek, G. and Yang, J. (2007) PathFinder: mining signal transduction pathway segments from protein-protein interaction networks. BMC Bioinformatics, 8, 335PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Myers, C. L., Robson, D., Wible, A., Hibbs, M. A., Chiriac, C., Theesfeld, C. L., Dolinski, K. and Troyanskaya, O. G. (2005) Discovery of biological networks from diverse functional genomic data. Genome Biol., 6, R114PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Ourfali, O., Shlomi, T., Ideker, T., Ruppin, E. and Sharan, R. (2007) SPINE: a framework for signaling-regulatory pathway inference from cause-effect experiments. Bioinformatics, 23, i359–i366PubMedCrossRefGoogle Scholar
  83. 83.
    Basha, O., Tirman, S., Eluk, A. and Yeger-Lotem, E. (2013) Response Net2.0: revealing signaling and regulatory pathways connecting your proteins and genes—now with human data. Nucleic Acids Res., 41, W198–W203PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Lan, A., Smoly, I. Y., Rapaport, G., Lindquist, S., Fraenkel, E. and Yeger-Lotem, E. (2011) ResponseNet: revealing signaling and regulatory networks linking genetic and transcriptomic screening data. Nucleic Acids Res., 39, W424–W429PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Wang, K., Saito, M., Bisikirska, B. C., Alvarez, M. J., Lim, W. K., Rajbhandari, P., Shen, Q., Nemenman, I., Basso, K., Margolin, A. A., et al. (2009) Genome-wide identification of post-translational modulators of transcription factor activity in human B cells. Nat. Biotechnol., 27, 829–837PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Zhu, F. and Guan, Y. (2014) Predicting dynamic signaling network response under unseen perturbations. Bioinformatics, 30, 2772–2778PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Chen, J. and Zhang, S. (2016) Integrative analysis for identifying joint modular patterns of gene-expression and drug-response data. Bioinformatics, 32, 1724–1732PubMedCrossRefGoogle Scholar
  88. 88.
    Qin, J., Li, M. J., Wang, P., Zhang, M. Q. and Wang, J. (2011) ChIPArray: combinatory analysis of ChIP-seq/chip and microarray gene expression data to discover direct/indirect targets of a transcription factor. Nucleic Acids Res., 39, W430–W436PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Wang, P., Qin, J., Qin, Y., Zhu, Y., Wang, L. Y., Li, M. J., Zhang, M. Q. and Wang, J. (2015) ChIP-Array 2: integrating multiple omics data to construct gene regulatory networks. Nucleic Acids Res., 43, W264–W269PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Wang, S., Sun, H., Ma, J., Zang, C., Wang, C., Wang, J., Tang, Q., Meyer, C. A., Zhang, Y. and Liu, X. S. (2013) Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nat. Protoc., 8, 2502–2515PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Qin, J., Hu, Y., Xu, F., Yalamanchili, H. K. and Wang, J. (2014) Inferring gene regulatory networks by integrating ChIP-seq/chip and transcriptome data via LASSO-type regularization methods. Methods, 67, 294–303PubMedCrossRefGoogle Scholar
  92. 92.
    Maienschein-Cline, M., Zhou, J., White, K. P., Sciammas, R. and Dinner, A. R. (2012) Discovering transcription factor regulatory targets using gene expression and binding data. Bioinformatics, 28, 206–213PubMedCrossRefGoogle Scholar
  93. 93.
    Wu, G. and Ji, H. (2013) ChIPXpress: using publicly available gene expression data to improve ChIP-seq and ChIP-chip target gene ranking. BMC Bioinformatics, 14, 188PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Tang, B., Hsu, H. K., Hsu, P. Y., Bonneville, R., Chen, S. S., Huang, T. H. and Jin, V. X. (2012) Hierarchical modularity in ERa transcriptional network is associated with distinct functions and implicates clinical outcomes. Sci. Rep., 2, 875PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Yan, B., Li, H., Yang, X., Shao, J., Jang, M., Guan, D., Zou, S., Van Waes, C., Chen, Z. and Zhan, M. (2013) Unraveling regulatory programs for NF-kappaB, p53 and microRNAs in head and neck squamous cell carcinoma. PLoS One, 8, e73656CrossRefGoogle Scholar
  96. 96.
    Pique-Regi, R., Degner, J. F., Pai, A. A., Gaffney, D. J., Gilad, Y. and Pritchard, J. K. (2011) Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data. Genome Res., 21, 447–455PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Huang, J. C., Babak, T., Corson, T. W., Chua, G., Khan, S., Gallie, B. L., Hughes, T. R., Blencowe, B. J., Frey, B. J. and Morris, Q. D. (2007) Using expression profiling data to identify human microRNA targets. Nat. Methods, 4, 1045–1049PubMedCrossRefGoogle Scholar
  98. 98.
    Liang, Z., Zhou, H., He, Z., Zheng, H. and Wu, J. (2011) mirAct: a web tool for evaluating microRNA activity based on gene expression data. Nucleic Acids Res., 39, W139–144PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Nam, S., Li, M., Choi, K., Balch, C., Kim, S. and Nephew, K. P. (2009) MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression. Nucleic Acids Res., 37, W356–362PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Sales, G., Coppe, A., Bisognin, A., Biasiolo, M., Bortoluzzi, S. and Romualdi, C. (2010) MAGIA, a web-based tool for miRNA and Genes Integrated Analysis. Nucleic Acids Res., 38 W352–W359PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Qin, J., Li, M. J., Wang, P., Wong, N. S., Wong, M. P., Xia, Z., Tsao, G. S., Zhang, M. Q. and Wang, J. (2013) ProteoMirExpress: inferring microRNA and protein-centered regulatory networks from highthroughput proteomic and mRNA expression data. Mol. Cell. Proteomics, 12, 3379–3387PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Wang, L.Y., Wang, P., Li, M.J., Qin, J., Wang, X., Zhang, M.Q. and Wang, J. (2011) EpiRegNet: constructing epigenetic regulatory network from high throughput gene expression data for humans. Epigenetics, 6, 1505–1512PubMedCrossRefGoogle Scholar
  103. 103.
    Guan, D., Shao, J., Deng, Y., Wang, P., Zhao, Z., Liang, Y., Wang, J. and Yan, B. (2014) CMGRN: a web server for constructing multilevel gene regulatory networks using ChIP-seq and gene expression data. Bioinformatics, 30, 1190–1192PubMedCrossRefGoogle Scholar
  104. 104.
    Huang, G. T., Athanassiou, C. and Benos, P. V. (2011) mirConnX: condition-specific mRNA-microRNA network integrator. Nucleic Acids Res., 39, W416–W423PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Zhang, S., Li, Q., Liu, J. and Zhou, X. J. (2011) A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules. Bioinformatics, 27, i401–i409PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Zhang, S., Liu, C. C., Li, W., Shen, H., Laird, P. W. and Zhou, X. J. (2012) Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res., 40, 9379–9391PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Li, W., Zhang, S., Liu, C. C. and Zhou, X. J. (2012) Identifying multilayer gene regulatory modules from multi-dimensional genomic data. Bioinformatics, 28, 2458–2466PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Guan, D., Shao, J., Zhao, Z., Wang, P., Qin, J., Deng, Y., Boheler, K. R., Wang, J. and Yan, B. (2014) PTHGRN: unraveling posttranslational hierarchical gene regulatory networks using PPI, ChIPseq and gene expression data. Nucleic Acids Res., 42, W130–136PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Wu, D., Wang, D., Zhang, M. Q. and Gu, J. (2015) Fast dimension reduction and integrative clustering of multi-omics data using lowrank approximation: application to cancer molecular classification. BMC Genomics, 16, 1022PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Oyama, M., Kozuka-Hata, H., Tasaki, S., Semba, K., Hattori, S., Sugano, S., Inoue, J. and Yamamoto, T. (2009) Temporal perturbation of tyrosine phosphoproteome dynamics reveals the system-wide regulatory networks. Mol. Cell. Proteomics, 8, 226–231PubMedCrossRefGoogle Scholar
  111. 111.
    Bodenmiller, B., Wanka, S., Kraft, C., Urban, J., Campbell, D., Pedrioli, P. G., Gerrits, B., Picotti, P., Lam, H., Vitek, O., et al. (2010) Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast. Sci. Signal., 3, rs4PubMedPubMedCentralGoogle Scholar
  112. 112.
    Caldana, C., Fernie, A. R., Willmitzer, L. and Steinhauser, D. (2012) Unraveling retrograde signaling pathways: finding candidate signaling molecules via metabolomics and systems biology driven approaches. Front. Plant Sci., 3, 267PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Zhu, J., Sova, P., Xu, Q., Dombek, K. M., Xu, E. Y., Vu, H., Tu, Z., Brem, R. B., Bumgarner, R. E. and Schadt, E. E. (2012) Stitching together multiple data dimensions reveals interacting metabolomic and transcriptomic networks that modulate cell regulation. PLoS Biol., 10, e1001301CrossRefGoogle Scholar
  114. 114.
    Jha, A. K., Huang, S. C., Sergushichev, A., Lampropoulou, V., Ivanova, Y., Loginicheva, E., Chmielewski, K., Stewart, K. M., Ashall, J., Everts, B., et al. (2015) Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity, 42, 419–430PubMedCrossRefGoogle Scholar
  115. 115.
    Marbach, D., Costello, J. C., Küffner, R., Vega, N. M., Prill, R. J., Camacho, D. M., Allison, K. R., The DREAM5 Consortium, Kellis, M., Collins, J. J. et al. (2012) Wisdom of crowds for robust gene network inference. Nat. Methods, 9, 796–804PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Hu, Z., Killion, P. J. and Iyer, V. R. (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nat. Genet., 39, 683–687PubMedCrossRefGoogle Scholar
  117. 117.
    Song, L., Zhang, Z., Grasfeder, L. L., Boyle, A. P., Giresi, P. G., Lee, B. K., Sheffield, N. C., Gräf, S., Huss, M., Keefe, D., et al. (2011) Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res., 21, 1757–1767PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Kelly, T. K., Liu, Y., Lay, F. D., Liang, G., Berman, B. P. and Jones, P. A. (2012) Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res., 22, 2497–2506PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Natarajan, A., Yardimci, G. G., Sheffield, N. C., Crawford, G. E. and Ohler, U. (2012) Predicting cell-type-specific gene expression from regions of open chromatin. Genome Res., 22, 1711–1722PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Lan, X., Witt, H., Katsumura, K., Ye, Z., Wang, Q., Bresnick, E. H., Farnham, P. J. and Jin, V. X. (2012) Integration of Hi-C and ChIP-seq data reveals distinct types of chromatin linkages. Nucleic Acids Res., 40, 7690–7704PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Doench, J. G. and Sharp, P. A. (2004) Specificity of microRNA target selection in translational repression. Genes Dev., 18, 504–511PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Chen, X. (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 303, 2022–2025PubMedCrossRefGoogle Scholar
  123. 123.
    Wightman, B., Ha, I. and Ruvkun, G. (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75, 855–862PubMedCrossRefGoogle Scholar
  124. 124.
    Vasudevan, S., Tong, Y. and Steitz, J. A. (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science, 318, 1931–1934PubMedCrossRefGoogle Scholar
  125. 125.
    Vasudevan, S. and Steitz, J. A. (2007) AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell, 128, 1105–1118PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Chen, Y., Wang, Y., Xuan, Z., Chen, M. and Zhang, M. Q. (2016) De novo deciphering three-dimensional chromatin interaction and topological domains by wavelet transformation of epigenetic profiles. Nucleic Acids Res., 44, e106CrossRefGoogle Scholar
  127. 127.
    Djekidel, M. N., Liang, Z., Wang, Q., Hu, Z., Li, G., Chen, Y. and Zhang, M. Q. (2015) 3CPET: finding co-factor complexes from ChIAPET data using a hierarchical Dirichlet process. Genome Biol., 16, 288PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Whalen, S., Truty, R. M. and Pollard, K. S. (2016) Enhancer-promoter interactions are encoded by complex genomic signatures on looping chromatin. Nat. Genet., 48, 488–496PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Wang, Z., Zang, C., Rosenfeld, J. A., Schones, D. E., Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Peng, W., Zhang, M. Q., et al. (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet., 40, 897–903PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Karlic, R., Chung, H. R., Lasserre, J., Vlahovicek, K. and Vingron, M. (2010) Histone modification levels are predictive for gene expression. Proc. Natl. Acad. Sci. USA, 107, 2926–2931PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Zhu, Y., Sun, L., Chen, Z., Whitaker, J. W., Wang, T. and Wang, W. (2013) Predicting enhancer transcription and activity from chromatin modifications. Nucleic Acids Res., 41, 10032–10043PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Khalil, A. M., Guttman, M., Huarte, M., Garber, M., Raj, A., Rivea Morales, D., Thomas, K., Presser, A., Bernstein, B. E., van Oudenaarden, A., et al. (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl. Acad. Sci. USA, 106, 11667–11672PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Knouf, E. C., Garg, K., Arroyo, J. D., Correa, Y., Sarkar, D., Parkin, R. K., Wurz, K., O’Briant, K. C., Godwin, A. K., Urban, N. D., et al. (2012) An integrative genomic approach identifies p73 and p63 as activators of miR-200 microRNA family transcription. Nucleic Acids Res., 40, 499–510PubMedCrossRefGoogle Scholar
  134. 134.
    Ritchie, M. D., Holzinger, E. R., Li, R., Pendergrass, S. A. and Kim, D. (2015) Methods of integrating data to uncover genotype-phenotype interactions. Nat. Rev. Genet., 16, 85–97PubMedCrossRefGoogle Scholar
  135. 135.
    Kristensen, V. N., Lingjærde, O. C., Russnes, H. G., Vollan, H. K., Frigessi, A. and Børresen-Dale, A. L. (2014) Principles and methods of integrative genomic analyses in cancer. Nat. Rev. Cancer, 14, 299–313PubMedCrossRefGoogle Scholar
  136. 136.
    Marbach, D., Roy, S., Ay, F., Meyer, P. E., Candeias, R., Kahveci, T., Bristow, C. A. and Kellis, M. (2012) Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks. Genome Res., 22, 1334–1349PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Sintupisut, N., Liu, P. L. and Yeang, C. H. (2013) An integrative characterization of recurrent molecular aberrations in glioblastoma genomes. Nucleic Acids Res., 41, 8803–8821PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Palsson, B. and Zengler, K. (2010) The challenges of integrating multi-omic data sets. Nat. Chem. Biol., 6, 787–789PubMedCrossRefGoogle Scholar
  139. 139.
    Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., et al. (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122, 947–956PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Marson, A., Levine, S. S., Cole, M. F., Frampton, G. M., Brambrink, T., Johnstone, S., Guenther, M. G., Johnston, W. K., Wernig, M., Newman, J., et al. (2008) Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell, 134, 521–533PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Boyer, L. A., Plath, K., Zeitlinger, J., Brambrink, T., Medeiros, L. A., Lee, T. I., Levine, S. S., Wernig, M., Tajonar, A., Ray, M. K., et al. (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature, 441, 349–353PubMedCrossRefGoogle Scholar
  142. 142.
    Takahashi, K. and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676PubMedCrossRefGoogle Scholar
  143. 143.
    Anokye-Danso, F., Trivedi, C. M., Juhr, D., Gupta, M., Cui, Z., Tian, Y., Zhang, Y., Yang, W., Gruber, P. J., Epstein, J. A., et al. (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 8, 376–388PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Wu, S. M. and Hochedlinger, K. (2011) Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat. Cell Biol., 13, 497–505PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Buganim, Y., Faddah, D. A. and Jaenisch, R. (2013) Mechanisms and models of somatic cell reprogramming. Nat. Rev. Genet., 14, 427–439PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Gifford, C. A., Ziller, M. J., Gu, H., Trapnell, C., Donaghey, J., Tsankov, A., Shalek, A. K., Kelley, D. R., Shishkin, A. A., Issner, R., et al. (2013) Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell, 153, 1149–1163PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Mohn, F., Weber, M., Rebhan, M., Roloff, T. C., Richter, J., Stadler, M. B., Bibel, M. and Schübeler, D. (2008) Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell, 30, 755–766PubMedCrossRefGoogle Scholar
  148. 148.
    Tsankov, A. M., Gu, H., Akopian, V., Ziller, M. J., Donaghey, J., Amit, I., Gnirke, A. and Meissner, A. (2015) Transcription factor binding dynamics during human ES cell differentiation. Nature, 518, 344–349PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Choukrallah, M. A., Song, S., Rolink, A. G., Burger, L. and Matthias, P. (2015) Enhancer repertoires are reshaped independently of early priming and heterochromatin dynamics during B cell differentiation. Nat. Commun., 6, 8324PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Sancho-Martinez, I., Baek, S. H. and Izpisua Belmonte, J. C. (2012) Lineage conversion methodologies meet the reprogramming toolbox. Nat. Cell Biol., 14, 892–899PubMedCrossRefGoogle Scholar
  151. 151.
    Heinäniemi, M., Nykter, M., Kramer, R., Wienecke-Baldacchino, A., Sinkkonen, L., Zhou, J. X., Kreisberg, R., Kauffman, S. A., Huang, S. and Shmulevich, I. (2013) Gene-pair expression signatures reveal lineage control. Nat. Methods, 10, 577–583PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Cahan, P., Li, H., Morris, S. A., Lummertz da Rocha, E., Daley, G. Q. and Collins, J. J. (2014) CellNet: network biology applied to stem cell engineering. Cell, 158, 903–915PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Rackham, O. J., Firas, J., Fang, H., Oates, M. E., Holmes, M. L., Knaupp, A. S., Suzuki, H., Nefzger, C. M., Daub, C. O., Shin, J.W., et al. (2016) A predictive computational framework for direct reprogramming between human cell types. Nat. Genet., 48, 331–335PubMedCrossRefGoogle Scholar
  154. 154.
    Li, M. J., Wang, P., Liu, X., Lim, E. L., Wang, Z., Yeager, M., Wong, M. P., Sham, P. C., Chanock, S. J. and Wang, J. (2012) GWASdb: a database for human genetic variants identified by genome-wide association studies. Nucleic Acids Res., 40, D1047–D1054PubMedCrossRefGoogle Scholar
  155. 155.
    Li, M. J., Sham, P. C. and Wang, J. (2012) Genetic variant representation, annotation and prioritization in the post-GWAS era. Cell Res., 22, 1505–1508PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Li, M. J., Yan, B., Sham, P. C. and Wang, J. (2015) Exploring the function of genetic variants in the non-coding genomic regions: approaches for identifying human regulatory variants affecting gene expression. Brief. Bioinform. 16, 393–412PubMedCrossRefGoogle Scholar
  157. 157.
    Alfaro, J. A., Sinha, A., Kislinger, T. and Boutros, P. C. (2014) Oncoproteogenomics: cancer proteomics joins forces with genomics. Nat. Methods, 11, 1107–1113PubMedCrossRefGoogle Scholar
  158. 158.
    The Cancer Genome Atlas Research Network (2013) Integrated genomic characterization of endometrial carcinoma. Nature, 497, 67–73PubMedCentralCrossRefGoogle Scholar
  159. 159.
    Wang, B., Mezlini, A. M., Demir, F., Fiume, M., Tu, Z., Brudno, M., Haibe-Kains, B. and Goldenberg, A. (2014) Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods, 11, 333–337PubMedCrossRefGoogle Scholar
  160. 160.
    Yuan, Y., Van Allen, E. M., Omberg, L., Wagle, N., Amin-Mansour, A., Sokolov, A., Byers, L. A., Xu, Y., Hess, K. R., Diao, L., et al. (2014) Assessing the clinical utility of cancer genomic and proteomic data across tumor types. Nat. Biotechnol., 32, 644–652PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Ernst, J. and Kellis, M. (2015) Large-scale imputation of epigenomic datasets for systematic annotation of diverse human tissues. Nat. Biotechnol., 33, 364–376PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Marchini, J. and Howie, B. (2010) Genotype imputation for genomewide association studies. Nat. Rev. Genet., 11, 499–511PubMedCrossRefGoogle Scholar
  163. 163.
    Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B. W., Jansen, R., de Geus, E. J., Boomsma, D. I., Wright, F. A., et al. (2016) Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet., 48, 245–252PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W. and Smyth, G. K. (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 43, e47CrossRefGoogle Scholar
  165. 165.
    Orlando, D. A., Chen, M. W., Brown, V. E., Solanki, S., Choi, Y. J., Olson, E. R., Fritz, C. C., Bradner, J. E. and Guenther, M. G. (2014) Quantitative ChIP-Seq normalization reveals global modulation of the epigenome. Cell Reports, 9, 1163–1170PubMedCrossRefGoogle Scholar
  166. 166.
    Diaz, A., Park, K., Lim, D.A. and Song, J.S. (2012) Normalization, bias correction, and peak calling for ChIP-seq. Stat. Appl. Genet. Mol. Biol. 11, Article 9CrossRefGoogle Scholar
  167. 167.
    Sysi-Aho, M., Katajamaa, M., Yetukuri, L. and Oresic, M. (2007) Normalization method for metabolomics data using optimal selection of multiple internal standards. BMC Bioinformatics, 8, 93PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Johnson, W. E., Li, C. and Rabinovic, A. (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8, 118–127PubMedCrossRefGoogle Scholar
  169. 169.
    Leek, J. T. and Storey, J. D. (2007) Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet., 3, e161CrossRefGoogle Scholar
  170. 170.
    Thompson, J.A., Tan, J. and Greene, C.S. (2016) Cross-platform normalization of microarray and RNA-seq data for machine learning applications. Peer J, 4, e1621CrossRefGoogle Scholar
  171. 171.
    Zang, C., Wang, T., Deng, K., Li, B., Hu, S., Qin, Q., Xiao, T., Zhang, S., Meyer, C. A., He, H. H., et al. (2016) High-dimensional genomic data bias correction and data integration using MANCIE. Nat. Commun., 7, 11305PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Rudy, J. and Valafar, F. (2011) Empirical comparison of crossplatform normalization methods for gene expression data. BMC Bioinformatics, 12, 467PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2016

Authors and Affiliations

  • Jing Qin
    • 1
  • Bin Yan
    • 2
    • 3
  • Yaohua Hu
    • 4
  • Panwen Wang
    • 5
  • Junwen Wang
    • 5
    • 6
  1. 1.School of Life SciencesThe Chinese University of Hong KongHong Kong SARChina
  2. 2.Laboratory for Food Safety and Environmental Technology, Institutes of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
  3. 3.School of Biomedical SciencesThe University of Hong KongHong Kong SARChina
  4. 4.College of Mathematics and StatisticsShenzhen UniversityShenzhenChina
  5. 5.Department of Health Sciences Research and Center for Individualized MedicineMayo ClinicScottsdaleUSA
  6. 6.Department of Biomedical InformaticsArizona State UniversityScottsdaleUSA

Personalised recommendations