Advertisement

Quantitative Biology

, Volume 4, Issue 4, pp 310–319 | Cite as

A survey on biomarker identification based on molecular networks

  • Guanghui Zhu
  • Xing-Ming Zhao
  • Jun Wu
Review
  • 312 Downloads

Abstract

Background

Identifying biomarkers for accurate diagnosis and prognosis of diseases is important for the prevention of disease development. The molecular networks that describe the functional relationships among molecules provide a global view of the complex biological systems. With the molecular networks, the molecular mechanisms underlying diseases can be unveiled, which helps identify biomarkers in a systematic way.

Results

In this survey, we report the recent progress on identifying biomarkers based on the topology of molecular networks, and we categorize those biomarkers into three groups, including node biomarkers, edge biomarkers and network biomarkers. These distinct types of biomarkers can be detected under different conditions depending on the data available.

Conclusions

The biomarkers identified based on molecular networks can provide more accurate diagnosis and prognosis. The pros and cons of different types of biomarkers as well as future directions to improve the methods for identifying biomarkers are also discussed.

Keywords

biomarker molecular network module pathway 

References

  1. 1.
    Akbani, R., Ng, P. K., Werner, H. M., Shahmoradgoli, M., Zhang, F., Ju, Z., Liu, W., Yang, J. Y., Yoshihara, K., Li, J., et al. (2014) A pancancer proteomic perspective on The Cancer Genome Atlas. Nat. Commun., 5, 3887CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bell, D., Berchuck, A., Birrer, M., Chien, J., Cramer, D.W., Dao, F., Dhir, R., DiSaia, P., Gabra, H., Glenn, P., et al. (2011) Integrated genomic analyses of ovarian carcinoma. Nature, 474, 609–615CrossRefGoogle Scholar
  3. 3.
    Verhaak, R. G., Tamayo, P., Yang, J. Y., Hubbard, D., Zhang, H., Creighton, C. J., Fereday, S., Lawrence, M., Carter, S. L., Mermel, C. H., et al. (2013) Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J. Clin. Invest., 123, 517–525PubMedGoogle Scholar
  4. 4.
    Wu, G. and Stein, L. (2012) A network module-based method for identifying cancer prognostic signatures. Genome Biol., 13, R112CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zhang, W., Zang, J., Jing, X., Sun, Z., Yan, W., Yang, D., Shen, B. and Guo, F. (2014) Identification of candidate miRNA biomarkers from miRNA regulatory network with application to prostate cancer. J. Transl. Med., 12, 66CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Li, Y., Vongsangnak, W., Chen, L. and Shen, B. (2014) Integrative analysis reveals disease-associated genes and biomarkers for prostate cancer progression. BMC Med. Genomics, 7, S3CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Santiago, J. A. and Potashkin, J. A. (2015) Network-based metaanalysis identifies HNF4A and PTBP1 as longitudinally dynamic biomarkers for Parkinson’s disease. Proc. Natl. Acad. Sci. USA, 112, 2257–2262CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Li, Y., Xu, J., Chen, H., Bai, J., Li, S., Zhao, Z., Shao, T., Jiang, T., Ren, H., Kang, C., et al. (2013) Comprehensive analysis of the functional microRNA-mRNA regulatory network identifies miRNA signatures associated with glioma malignant progression. Nucleic Acids Res., 41, e203CrossRefGoogle Scholar
  9. 9.
    Ozgür, A., Vu, T., Erkan, G. and Radev, D. R. (2008) Identifying gene-disease associations using centrality on a literature mined geneinteraction network. Bioinformatics, 24, i277–i285CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bertrand, D., Chng, K. R., Sherbaf, F. G., Kiesel, A., Chia, B. K. H., Sia, Y. Y., Huang, S. K., Hoon, D. S. B., Liu, E. T., Hillmer, A., et al. (2015) Patient-specific driver gene prediction and risk assessment through integrated network analysis of cancer omics profiles. Nucleic Acids Res., 43, e44CrossRefGoogle Scholar
  11. 11.
    Suo, C., Hrydziuszko, O., Lee, D., Pramana, S., Saputra, D., Joshi, H., Calza, S. and Pawitan, Y. (2015) Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival. Bioinformatics, 31, 2607–2613CrossRefPubMedGoogle Scholar
  12. 12.
    Gao, C., Dang, X., Chen, Y. and Wilkins, D. (2009) Graph ranking for exploratory gene data analysis. BMC Bioinformatics, 10, S19CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cun, Y. and Fröhlich, H. (2013) Network and data integration for biomarker signature discovery via network smoothed T-statistics. PLoS One, 8, e73074CrossRefGoogle Scholar
  14. 14.
    Hofree, M., Shen, J. P., Carter, H., Gross, A. and Ideker, T. (2013) Network-based stratification of tumor mutations. Nat. Methods, 10, 1108–1115CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Qin, G. M. Li, R. Y. and Zhao X. M. (2016) Identifying disease associated miRNAs based on protein domains. IEEE/ACM Trans. Comput. Biol. BioinformGoogle Scholar
  16. 16.
    Zhang, W., Zeng, T. and Chen, L. (2014) EdgeMarker: identifying differentially correlated molecule pairs as edge-biomarkers. J. Theor. Biol., 362, 35–43CrossRefPubMedGoogle Scholar
  17. 17.
    Liu, X., Liu, Z. P., Zhao, X. M. and Chen, L. (2012) Identifying disease genes and module biomarkers by differential interactions. J. Am. Med. Inform. Assoc., 19, 241–248CrossRefPubMedGoogle Scholar
  18. 18.
    Ben-Hamo, R., Gidoni, M. and Efroni, S. (2014) PhenoNet: identification of key networks associated with disease phenotype. Bioinformatics, 30, 2399–2405CrossRefPubMedGoogle Scholar
  19. 19.
    Ma, S., Jiang, T. and Jiang, R. (2015) Differential regulation enrichment analysis via the integration of transcriptional regulatory network and gene expression data. Bioinformatics, 31, 563–571CrossRefPubMedGoogle Scholar
  20. 20.
    Li, Y., Liang, C., Wong, K. C., Jin, K.and Zhang, Z. (2014) Inferring probabilistic miRNA-mRNA interaction signatures in cancers: a roleswitch approach. Nucleic Acids Res., 42, e76CrossRefGoogle Scholar
  21. 21.
    Yu, X., Li, G. and Chen, L. (2014) Prediction and early diagnosis of complex diseases by edge-network. Bioinformatics, 30, 852–859CrossRefPubMedGoogle Scholar
  22. 22.
    Liu, K. Q., Liu, Z. P., Hao, J. K., Chen, L. and Zhao, X. M. (2012) Identifying dysregulated pathways in cancers from pathway interaction networks. BMC Bioinformatics, 13, 126CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wang, Y., Chen, J., Li, Q., Wang, H., Liu, G., Jing, Q. and Shen, B. (2011) Identifying novel prostate cancer associated pathways based on integrative microarray data analysis. Comput. Biol. Chem., 35, 151–158CrossRefPubMedGoogle Scholar
  24. 24.
    Zhao, X. M., Liu, K. Q., Zhu, G., He, F., Duval, B., Richer, J. M., Huang, D. S., Jiang, C. J., Hao, J. K. and Chen, L. (2015) Identifying cancer-related microRNAs based on gene expression data. Bioinformatics, 31, 1226–1234CrossRefPubMedGoogle Scholar
  25. 25.
    Bader, G. D. and Hogue, C. W. (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 4, 2CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Nepusz, T., Yu, H. and Paccanaro, A. (2012) Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods, 9, 471–472CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhang, X., Gao, L., Liu, Z. P. and Chen, L. (2015) Identifying module biomarker in type 2 diabetes mellitus by discriminative area of functional activity. BMC Bioinformatics, 16, 92CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Chuang, H. Y., Lee, E., Liu, Y. T., Lee, D. and Ideker, T. (2007) Network-based classification of breast cancer metastasis. Mol. Syst. Biol., 3, 140CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zeng, T., Wang, D. C., Wang, X., Xu, F. and Chen, L. (2014) Prediction of dynamical drug sensitivity and resistance by module network rewiring-analysis based on transcriptional profiling. Drug Resist. Updat., 17, 64–76CrossRefPubMedGoogle Scholar
  30. 30.
    Zeng, T., Zhang, W., Yu, X., Liu, X., Li, M. and Chen, L. (2015) Big-data-based edge biomarkers: study on dynamical drug sensitivity and resistance in individuals. Brief. Bioinform., 17, 576–592CrossRefPubMedGoogle Scholar
  31. 31.
    Leung, A., Bader, G. D. and Reimand, J. (2014) HyperModules: identifying clinically and phenotypically significant network modules with disease mutations for biomarker discovery. Bioinformatics, 30, 2230–2232CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kim, Y. A., Cho, D. Y., Dao, P. and Przytycka, T. M. (2015) MEMCover: integrated analysis of mutual exclusivity and functional network reveals dysregulated pathways across multiple cancer types. Bioinformatics, 31, i284–i292CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kim, Y. A., Salari, R., Wuchty, S. and Przytycka, T. M. (2013) Module cover—a new approach to genotype-phenotype studies, In Proceedings of the Pacific Symposium, Biocomputing, 135–146, Singapore: World ScientificGoogle Scholar
  34. 34.
    Chen, L., Liu, R., Liu, Z. P., Li, M.and Aihara, K. (2012) Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci. Rep., 2, 342CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Liu, R., Li, M., Liu, Z. P., Wu, J., Chen, L. and Aihara, K. (2012) Identifying critical transitions and their leading biomolecular networks in complex diseases. Sci. Rep., 2, 813CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Li, Y., Jin, S., Lei, L., Pan, Z. and Zou, X. (2015) Deciphering deterioration mechanisms of complex diseases based on the construction of dynamic networks and systems analysis. Sci. Rep., 5, 9283CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zeng, T., Zhang, C. C., Zhang, W., Liu, R., Liu, J. and Chen, L. (2014) Deciphering early development of complex diseases by progressive module network. Methods, 67, 334–343CrossRefPubMedGoogle Scholar
  38. 38.
    Allahyar, A. and de Ridder, J. (2015) FERAL: network-based classifier with application to breast cancer outcome prediction. Bioinformatics, 31, i311–i319CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    de Gramont, A., Watson, S., Ellis, L. M., Rodón, J., Tabernero, J., de Gramont, A. and Hamilton, S. R. (2015) Pragmatic issues in biomarker evaluation for targeted therapies in cancer. Nat. Rev. Clin. Oncol., 12, 197–212CrossRefPubMedGoogle Scholar
  40. 40.
    Qin, G. and Zhao, X. M. (2014) A survey on computational approaches to identifying disease biomarkers based on molecular networks. J. Theor. Biol., 362, 9–16CrossRefPubMedGoogle Scholar
  41. 41.
    Liu, R., Wang, X., Aihara, K. and Chen, L. (2014) Early diagnosis of complex diseases by molecular biomarkers, network biomarkers, and dynamical network biomarkers. Med. Res. Rev., 34, 455–478CrossRefPubMedGoogle Scholar
  42. 42.
    Zeng, T., Zhang, W., Yu, X., Liu, X., Li, M., Liu, R. and Chen, L. (2014) Edge biomarkers for classification and prediction of phenotypes. Sci. China Life Sci., 57, 1103–1114CrossRefPubMedGoogle Scholar
  43. 43.
    Zeng, T., Sun, S. Y., Wang, Y., Zhu, H. and Chen, L. (2013) Network biomarkers reveal dysfunctional gene regulations during disease progression. FEBS J., 280, 5682–5695CrossRefPubMedGoogle Scholar
  44. 44.
    Liu, X., Liu, R., Zhao, X. M. and Chen, L. (2013) Detecting earlywarning signals of type 1 diabetes and its leading biomolecular networks by dynamical network biomarkers. BMC Med Genomics, 6, S8PubMedPubMedCentralGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2016

Authors and Affiliations

  1. 1.Department of Computer Science and TechnologyTongji UniversityShanghaiChina

Personalised recommendations