Skip to main content
Log in

Dual-Task Performance in Developmental Coordination Disorder (DCD): Understanding Trade-offs and Their Implications for Training

  • Motor Disorders (P Wilson, Section Editor)
  • Published:
Current Developmental Disorders Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The aims of this review are to focus (a) on identifying the neural circuits that are involved by a cognitive task in relation to those that are involved during a simultaneous motor task in children with DCD, (b) to discuss cognition–action trade-offs across different dual tasks, and (c) on the possible training regimes to enhance cognitive performance to support motor function.

Recent Findings

This paper integrates results from neuroimaging and behavioral studies in typically developing and children with DCD. Evidence for disproportionate dual-task costs in developmental coordination disorder remains contradictory and inconclusive. Missing and or less efficient structural and functional connections between the fronto-parietal regions and the cerebellum in children with DCD provide support for the automatization deficit hypothesis, the internal modeling deficit hypothesis, as well as the mirror neuron hypothesis in explaining motor-cognitive trade-offs.

Summary

The dual-task paradigm represents an important tool for investigation of underlying mechanisms of motor disorders on both the neuronal and behavioral levels. In addition to the widely discussed internal model deficit hypothesis and the automatization deficit model, the role of mirror neurons in hemispheric communication appears to be a promising approach in the explanation of dual task costs and of motor impairment in children with DCD. Successful interventions to promote motor and cognitive ability in children with DCD can only be designed based on knowledge of the underlying mechanisms of this motor disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA: American Psychiatric Association; 2013.

    Book  Google Scholar 

  2. • Wilson PH, Smits-Engelsman B, Caeyenberghs K, Steenbergen B, Sugden D, Clark J, et al. Cognitive and neuroimaging findings in developmental coordination disorder: new insights from a systematic review of recent research. Dev Med Child Neurol. 2017;59(11):1117–29 A very comprehensive overview of current issues in DCD.

    Article  PubMed  Google Scholar 

  3. Speedtsberg MB, Christensen SB, Andersen KK, Bencke J, Jensen BR, Curtis DJ. Impaired postural control in children with developmental coordination disorder is related to less efficient central as well as peripheral control. Gait Posture. 2017;51:1–6.

    Article  PubMed  Google Scholar 

  4. Adams ILJ, Lust JM, Wilson PH, Steenbergen B. Testing predictive control of movement in children with DCD using converging operations. Br J Psychol. 2017;108(1):73–90.

    Article  PubMed  Google Scholar 

  5. Wilmut K, Gentle J, Barnett AL. Gait symmetry in individuals with and without developmental coordination disorder. Res Dev Disabil. 2017;60:107–17.

    Article  CAS  PubMed  Google Scholar 

  6. Berger SE, Harbourne RT, Horger MN. Cognition–action trade-offs reflect organization of attention in infancy. In: Benson JB, editor. Advances in child development and behavior, vol. 54. San Diego: Elsevier Academic Press; 2018. p. 45–86.

    Google Scholar 

  7. Li KZH, Bherer L, Mirelman A, Maidan I, Hausdorff JM. Cognitive involvement in balance, gait and dual-tasking in aging: a focused review from a neuroscience of aging perspective. Front Neurol. 2018;9:913. https://doi.org/10.3389/fneur.2018.00913 Published 2018 Oct 29.

    Article  PubMed  PubMed Central  Google Scholar 

  8. McIsaac TL, Fritz NE, Quinn L, Muratori LM. Cognitive-motor interference in neurodegenerative disease: a narrative review and implications for clinical management. Front Psychol. 2018;9:2061. https://doi.org/10.3389/fpsyg.2018.02061 Published 2018 Oct 29.

    Article  PubMed  PubMed Central  Google Scholar 

  9. •• Schott N, Klotzbier T. The motor-cognitive connection: indicator of future developmental success in children and adolescents? In: Bailey RP, Meeusen R, Schäfer-Cerasari S, Tomporowski P, editors. Physical activity and educational achievement: insights from exercise neuroscience. London, New York: Routledge; 2018. p. 111–29. An overview of the SMART COMPASS framework.

    Google Scholar 

  10. Sporns O. Network attributes for segregation and integration in the human brain. Curr Opin Neurobiol. 2013;23:162–71.

    Article  CAS  PubMed  Google Scholar 

  11. Friedman NP, Miyake A. Unity and diversity of executive functions: individual differences as a window on cognitive structure. Cortex. 2017;86:186–204.

    Article  PubMed  Google Scholar 

  12. Reineberg AE, Banich MT. Functional connectivity at rest is sensitive to individual differences in executive function: a network analysis. Hum Brain Mapp. 2016;37(8):2959–75.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Keehn B, Müller RA, Townsend J. Atypical attentional networks and the emergence of autism. Neurosci Biobehav Rev. 2012;37(2):164–83.

    Article  PubMed  PubMed Central  Google Scholar 

  14. •• Boyne P, Maloney T, DiFrancesco M, Fox MD, Awosika O, Aggarwal P, et al. Resting-state functional connectivity of subcortical locomotor centers explains variance in walking capacity. Hum Brain Mapp. 2018;39(12):4831–43 This study looks at the association between subcortical locomotor regions and the variability of walking performance using resting state functional MRI connectivity.

    Article  PubMed  Google Scholar 

  15. Herold F, Wiegel P, Scholkmann F, Thiers A, Hamacher D, Schega L. Functional near-infrared spectroscopy in movement science: a systematic review on cortical activity in postural and walking tasks. Neurophotonics. 2017;4(4):041403.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dixon ML, Girn M, Christoff K. Hierarchical organization of frontoparietal control networks underlying goal-directed behavior. In: Watanabe M, editor. The prefrontal cortex as an executive, emotional, and social brain. Tokyo: Springer. p. 133–48.

  17. Orr JM, Jackson TP, Imburgio MJ, Bernard JA. Dissociable prefrontal-cerebellar networks underlying executive function: evidence from resting state functional connectivity in the Human Connectome Project. bioRxiv 431593. https://doi.org/10.1101/431593.

  18. Mishra RK. Interaction between attention and language systems. A cognitive neuroscience perspective. New Delhi: Springer; 2015.

    Google Scholar 

  19. Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI. The activation of attentional networks. Neuroimage. 2005;26(2):471–9.

    Article  PubMed  Google Scholar 

  20. Rosenberg MD, Hsu W-T, Scheinost D, Constable RT, Chun MM. Connectome-based models predict separable components of attention in novel individuals. J Cogn Neurosci. 2018;30(2):160–73.

    Article  PubMed  Google Scholar 

  21. Fling BW, Cohen RG, Mancini M, et al. Functional reorganization of the locomotor network in Parkinson patients with freezing of gait. PLoS One. 2014;9(6):e100291. https://doi.org/10.1371/journal.pone.0100291 Published 2014 Jun 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Watanabe K, Funahashi S. Neural mechanisms of dual-task interference and cognitive capacity limitation in the prefrontal cortex. Nat Neurosci. 2014;17(4):601–11.

    Article  CAS  PubMed  Google Scholar 

  23. •• Leone C, Feys P, Moumdjian L, D’Amico E, Zappia M, Patti F. Cognitive-motor dual-task interference: a systematic review of neural correlates. Neurosci Biobehav Rev. 2017;75:348–60 A comprehensive overview of neural correlates of cognitive motor interference.

  24. •• Watanabe K, Funahashi S. Toward an understanding of the neural mechanisms underlying dual-task performance: contribution of comparative approaches using animal models. Neurosci Biobehav Rev. 2018;84:12–28 A very comprehensive overview of neural correlates of cognitive motor interference.

  25. Blumen HM, Holtzer R, Brown LL, Gazes Y, Verghese J. Behavioral and neural correlates of imagined walking and walking-while-talking in the elderly. Hum Brain Mapp. 2014;35(8):4090–104.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Reuter-Lorenz PA, Cappell KA. Neurocognitive aging and the compensation hypothesis. Curr Dir Psychol Sci. 2008;17:177–82.

    Article  Google Scholar 

  27. Leisman G, Moustafa AA, Shafir T. Thinking, walking, talking: integratory motor and cognitive brain function. Front Public Health. 2016;4:94. https://doi.org/10.3389/fpubh.2016.00094.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Crockett RA, Hsu CL, Best JR, Liu-Ambrose T. Resting state default mode network connectivity, dual task performance, gait speed, and postural sway in older adults with mild cognitive impairment. Front Aging Neurosci. 2017;9:423. https://doi.org/10.3389/fnagi.2017.00423 Published 2017 Dec 21.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Huang CY, Lin LL, Hwang IS. Age-related differences in reorganization of functional connectivity for a dual task with increasing postural destabilization. Front Aging Neurosci. 2017;9:96. https://doi.org/10.3389/fnagi.2017.00096 Published 2017 Apr 12.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yuan J, Blumen HM, Verghese J, Holtzer R. Functional connectivity associated with gait velocity during walking and walking-while-talking in aging: a resting-state fMRI study. Hum Brain Mapp. 2015;36:1484–93.

    Article  PubMed  Google Scholar 

  31. • Brown-Lum M, Zwicker JG. Neuroimaging and occupational therapy: bridging the gap to advance rehabilitation in developmental coordination disorder. J Mot Behav. 2017;49(1):98–110 A very comprehensive overview of transfer of possible neural correlates therapy approaches in DCD.

    Article  PubMed  Google Scholar 

  32. Biotteau M, Chaix Y, Blais M, Tallet J, Péran P, Albaret JM. Neural signature of DCD: a critical review of MRI neuroimaging studies. Front Neurol. 2016;7:227. https://doi.org/10.3389/fneur.2016.00227 Published 2016 Dec 16.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Reynolds JE, Licari MK, Reid SL, Elliot C, Winsor AM, Bynevelt M, et al. Reduced relative volume in motor and attention regions in developmental coordination disorder. Int J Dev Neuosci. 2017;58:59–64.

    Article  Google Scholar 

  34. Langevin LM, MacMaster FP, Dewey D. Distinct patterns of cortical thinning in concurrent motor and attention disorders. Dev Med Child Neurol. 2015;57(3):257–64.

    Article  PubMed  Google Scholar 

  35. Caeyenberghs K, Taymans T, Wilson PH, Vanderstraeten G, Hosseini H, van Waelvelde H. Neural signature of developmental coordination disorder in the structural connectome independent of comorbid autism. Dev Sci. 2016;19(4):599–612.

    Article  PubMed  Google Scholar 

  36. Debrabant J, Gheysen F, Caeyenberghs K, van Waelvelde H, Vingerhoets G. Neural underpinnings of impaired predictive motor timing in children with developmental coordination disorder. Res Dev Disabil. 2013;34(5):1478–87.

    Article  PubMed  Google Scholar 

  37. • Licari MK, Billington J, Reid SL, Wann JP, Elliot CM, Winsor AM, et al. Cortical functioning in children with developmental coordination disorder: a motor overflow study. Exp Brain Res. 2015;233(6):1703–10 This study considers differences in brain activation as an increased reliance on somatosensory information.

    Article  PubMed  Google Scholar 

  38. McLeod KR, Langevin LM, Goodyear BG, Dewey D. Functional connectivity of neural motor networks is disrupted in children with developmental coordination disorder and attention-deficit/hyperactivity disorder. Neuroimage Clin. 2014;4:566–75.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zwicker JG, Missiuna C, Harris SR, Boyd LA. Brain activation associated with motor skill practice in children with developmental coordination disorder: an fMRI study. Int J Dev Neurosci. 2011;29:145–52.

    Article  PubMed  Google Scholar 

  40. Reynolds JE, Licari MK, Billington J, Chen Y, Aziz-Zadeh L, Werner J, et al. Mirror neuron activation in children with developmental coordination disorder: a functional MRI study. Int J Dev Neurosci. 2015;47(PT b):309–19.

    Article  PubMed  Google Scholar 

  41. •• Reynolds JE, Billington J, Kerrigan S, Williams J, Elliot C, Winsor AM, et al. Mirror neuron system activation in children with developmental coordination disorder: a replication functional MRI study. Res Dev Disabil. 2019:16–27 This study considers the involvement of mirror neurons in DCD.

  42. •• He JL, Fuelscher I, Enticott PG, Teo W-P, Barhoun P, Hyde C. Interhemispheric cortical inhibition is reduced in young adults with developmental coordination disorder. Front Neurol. 2018;9:179. https://doi.org/10.3389/fneur.2018.00179 This study highlights the preserved intrahemispheric coordination but supports the notion of a disturbed interhemispheric coordination.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Debrant J, Vingerhoets G, van Waelvelde H, Leemans A, Taymans T, Caeyenberghs K. Brain connectomics of visual-motor deficits in children with developmental coordination disorder. J Pediatr. 2016;169:21–7.

    Article  Google Scholar 

  44. Koch JKL, Miguel H., Smiley-Oyen AL Prefrontal activation during Stroop and Wisconsin card sort tasks in children with developmental coordination disorder: a NIRS study. Exp Brain Res 2018: 236:3053, 3064.

  45. Querne L, Berquin P, Vernier-Hauvette MP, Fall S, Deltour L, Meyer ME, et al. Dysfunction of the attentional brain network in children with developmental coordination disorder: a fMRI study. Brain Res. 2008;1244:89–102.

    Article  CAS  PubMed  Google Scholar 

  46. Wang CH, Tseng YT, Liu D, Tsai CL. Neural oscillation reveals deficits in visuospatial working memory in children with developmental coordination disorder. Child Dev. 2017;88(5):1716–26.

    Article  PubMed  Google Scholar 

  47. Zwicker G, Missiuna C, Harris SR, Boyd LA. Brain activation of children with developmental coordination disorder is different than peers. Pediatrics. 2010;126(3):678–86.

    Article  Google Scholar 

  48. • Fuelscher I, Caeyenberghs K, Enticott PG, Williams J, Lum J, Hyde C. Differential activation of brain areas in children with developmental coordination disorder during tasks of manual dexterity: an ALE meta-analysis. Neurosci Biobehav Rev. 20180;86:77–84 A comprehensive overview of neural correlates in DCD using an ALE analysis approach.

  49. Caçola P, Getchell N, Srinivasan D, Alexandrakis G, Liu H. Cortical activity in fine-motor tasks in children with developmental coordination disorder: a preliminary fNIRS study. Int J Dev Neurosci. 2018;65:83–90.

    Article  PubMed  Google Scholar 

  50. Bullmore E, Sporns O. The economy or brain network organization. Nat Rev Neurosci. 2012;13(5):336–49.

    Article  CAS  PubMed  Google Scholar 

  51. Bassett DS, Bullmore ET. Small-world brain networks revisited. Neuroscientist. 2017;23(5):499–516.

    Article  PubMed  Google Scholar 

  52. Johnson MH. Interactive specialization: a domain-general framework for human functional brain development? Dev Cog Neurosci. 2011;1:7–21.

    Article  Google Scholar 

  53. Missiuna C, Moll S, King S, King G, Law M. A trajectory of troubles: parents impressions of the impact of developmental coordination disorder. Phys Occup Ther Pediatr. 2007;27(1):81–101.

    PubMed  Google Scholar 

  54. Roeder B, Ley P, Shennoy BH, Kekuunaya R, Bottari D. Sensitive periods for the functional specialization of the neural system for human face processing. Proc Natl Acad Sci U S A. 2013;110(42):16760–5.

    Article  CAS  Google Scholar 

  55. Fong SSM, Chung LMY, Bae YH, Vackova D, Ma AWW, Liu KPY. Neuromuscular processes in the control of posture in children with developmental coordination disorder: current evidence and future research directions. Curr Dev Disord Rep. 2018;5:43–8. https://doi.org/10.1007/s40474-018-0130-9.

    Article  Google Scholar 

  56. Gao W, Alcauter S, Smith JK, Gilmore JH, Lin W. Development of human brain cortical network architecture during infancy. Brain Struct Funct. 2015;220(2):1173–86.

    Article  PubMed  Google Scholar 

  57. Plummer P, Eskes G. Measuring treatment effects on dual-task performance: a framework for research and clinical practice. Front Hum Neurosci. 2015;9:225. https://doi.org/10.3389/fnhum.2015.00225.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Laufer Y, Ashkenazi T, Josman N. The effects of a concurrent cognitive task on the postural control of young children with and without developmental coordination disorder. Gait Posture. 2008;27:347–51.

    Article  PubMed  Google Scholar 

  59. Tsai CL, Pan CY, Cherng RJ, Wu SK. Dual-task study of cognitive and postural interference: a preliminary investigation of the automatization deficit hypothesis of developmental co-ordination disorder. Child Care Health Dev. 2009;35:551–60.

    Article  PubMed  Google Scholar 

  60. Chen FC, Tsai CL, Stoffregen TA, Chang CH, Wade MG. Postural adaptations to a supra-postural memory task among children with and without developmental coordination disorder. Dev Med Child Neurol. 2012;54(2):155–9.

    Article  PubMed  Google Scholar 

  61. •• Chen FC, Tsai CL. Light finger contact concurrently reduces postural sway and enhances signal detection performance in children with developmental coordination disorder. Gait Posture. 2016;45:193–7 This study looks at behavioral dual task costs in children with DCD.

    Article  PubMed  Google Scholar 

  62. •• Przysucha EP, Trap J, Zerpa C. Low levels of attentional interference have similar effects on static balance control of typically developing children and those with symptoms of developmental coordination disorder (DCD). J Child Dev Disord. 2016;2:15. https://doi.org/10.4172/2472-1786.100023 This study looks at behavioral dual task costs in children with DCD.

    Article  Google Scholar 

  63. Cherng RJ, Liang LY, Chen YJ, Chen JY. The effects of a motor and a cognitive concurrent task on walking in children with developmental coordination disorder. Gait Posture. 2009;29:204–7.

    Article  PubMed  Google Scholar 

  64. •• Schott N, El-Rajab I, Klotzbier T. Cognitive-motor interference during fine and gross motor tasks in children with developmental coordination disorder (DCD). Res Dev Disabil. 2016;57:136–48 This study looks at behavioral dual task costs in children with DCD using a complex motor task.

    Article  PubMed  Google Scholar 

  65. Yang L, Lam FMH, Liao LR. Psychometric properties of dual-task balance and walking assessments for individuals with neurological conditions: a systematic review. Gait Posture. 2017;52:110–23.

    Article  PubMed  Google Scholar 

  66. Adams IL, Lust JM, Wilson PH, Steenbergen B. Compromised motor control in children with DCD: a deficit in the internal model?—a systematic review. Neurosci Biobehav Rev. 2014;47:225–44.

    Article  PubMed  Google Scholar 

  67. Baddeley A. Fractionating the central executive. In: Stuss DT, Knight RT, editors. Principles of frontal lobe function. New York: Oxford University Press; 2002. p. 246–77.

    Chapter  Google Scholar 

  68. Rothbart MK, Posner MI. The developing brain in a multitasking world. Dev Rev. 2015;35:42–63.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Manly T, Anderson V, Nimmo-Smith I, Turner A, Watson P, Robertson I. The differential assessment of children’s attention: the test of everyday attention for children (TEA-Ch). Normative sample and ADHD performance. J Child Psychol Psychiatry. 2001;42:1065–87.

    Article  CAS  PubMed  Google Scholar 

  70. Checa P, Castellanos MV, Abundis-Gutierrez A, Rueda MR. Development of neural mechanisms of conflict and error processing during childhood: implications for self-regulation. Front Psychol. 2014;5:326. https://doi.org/10.3389/fpsyg.2014.00326.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Asonitou K, Koutsouki D, Kourtessis T, Charitou S. Motor and cognitive performance differences between children with and without developmental coordination disorder (DCD). Res Dev Disabil. 2012;33(4):996–1005.

    Article  PubMed  Google Scholar 

  72. •• Saban MT, Ornoy A, Parush S. Young adults with developmental coordination disorder: a longitudinal study. Am J Occup Ther. 2014;68(3):307–16.

    Article  Google Scholar 

  73. Fawcett AJ, Nicolson RI. Automatisation deficits in balance for dyslexic children. Percept Mot Skills. 1992;75(2):507–29.

    Article  CAS  PubMed  Google Scholar 

  74. Visser J. Subtypes and co-morbidities. In: Geuze RH, editor. Developmental coordination disorder: a review of current approaches. Marseille: Solal; 2007. p. 83–110.

    Google Scholar 

  75. Zwicker JG, Missiuna C, Harris SR, Boyd LA. Developmental coordination disorder: a pilot diffusion tensor imaging study. Pediatr Neurol. 2012;46:162–7.

    Article  PubMed  Google Scholar 

  76. •• Sokolov AA, Miall RC, Ivry RB. The cerebellum: adaptive prediction for movement and cognition. Trends Cogn Sci. 2017;21(5):313–32 This review looks at the cortical representation maps in the cerebellum and its involvement in cognition.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Shadmehr R, Mussa-Ivaldi FA. Adaptive representation of dynamics during learning of a motor task. J Neurosci. 1994;14:3208–24.

    Article  CAS  PubMed  Google Scholar 

  78. Wolpert DM, Miall RC. Forward models for physiological motor control. Neural Netw. 1996;9:1265–79.

    Article  PubMed  Google Scholar 

  79. Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum. Trends Cogn Sci. 1998;2:338–47.

    Article  CAS  PubMed  Google Scholar 

  80. Blakemore SJ, Wolpert DM, Frith CD. Abnormalities in the awareness of action. Trends Cogn Sci. 2002;6:237–42.

    Article  PubMed  Google Scholar 

  81. Beurskens R, Bock O. Does the walking task matter? Influence of different walking conditions on dual-task performances in young and older persons. Hum Mov Sci. 2013;32:1456–66.

    Article  PubMed  Google Scholar 

  82. Chelette AM, Pourmoghaddam A, Layne CS. Dual task and split-belt adaptation in young boys. Int J Phys Med Rehabil. 2014;2:247. https://doi.org/10.4172/2329-9096.1000247.

    Article  Google Scholar 

  83. Ellmers TJ, Cocks AJ, Doumas M, Williams AM, Young WR. Gazing into thin air: the dual-task costs of movement planning and execution during adaptive gait. PLoS One. 11(11):e0166063. https://doi.org/10.1371/journal.pone.0166063.

  84. Schaefer S, Krampe RT, Lindenberger U, Baltes PB. Age differences between children and young adults in the dynamics of dual-task prioritization: body (balance) versus mind (memory). Dev Psychol. 2008;44(3):747–57.

    Article  PubMed  Google Scholar 

  85. Regan MA, Strayer DL. Towards an understanding of driver inattention: taxonomy and theory. Ann Adv Automot Med. 2014;58:5–14.

    PubMed  PubMed Central  Google Scholar 

  86. Behmer LP Jr, Fournier LR. Mirror neuron activation as a function of explicit learning: changes in mu-event-related power after learning novel responses to ideomotor compatible, partially compatible, and non-compatible stimuli. Eur J Neurosci. 2016;44:2774–85.

    Article  PubMed  Google Scholar 

  87. Rizzolatti G, Fogassi L. The mirror mechanism: recent findings and perspectives. Philos Trans R Soc Lond Ser B Biol Sci. 2014;369(1644):20130420. https://doi.org/10.1098/rstb.2013.0420.

    Article  Google Scholar 

  88. Rizzolatti G, Sinigaglia C. The mirror mechanism: a basic principle of brain function. Nat Rev Neurosci. 2016;17:757–65.

    Article  CAS  PubMed  Google Scholar 

  89. Hickok G. Eight problems for the mirror neuron theory of action understanding in monkeys and humans. J Cogn Neurosci. 2009;21(7):1229–43.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Caramazza A, Anzellotti A, Strnad L, Lingnau A. Embodied cognition and mirror neurons: a critical assessment. Annu Rev Neurosci. 2014;37:1–15.

    Article  CAS  PubMed  Google Scholar 

  91. Williams JHG, Whiten A, Suddendorf T, Perrett DI. Imitation, mirror neurons and autism. Neurosci Biobehav Rev. 2001;25(4):287–95.

    Article  CAS  PubMed  Google Scholar 

  92. Rizzolatti G, Fabbri-Destro M, Cattaneo L. Mirror neurons and their clinical relevance. Nat Clin Pract Neurol. 2009;5(1):24–34.

    Article  PubMed  Google Scholar 

  93. Heyes C. Where do mirror neurons come from? Neurosci Biobehav Rev. 2010;34(4):575–83.

    Article  PubMed  Google Scholar 

  94. •• Shillcock R, Thomas J, Bailes R. Mirror neurons, prediction and hemispheric coordination: the prioritizing of intersubjectivity over ‘intrasubjectivity’. Axiomathes. 2018. https://doi.org/10.1007/s10516-018-9412-4 This paper discuss importance of interhemispheric coordination.

  95. Genç E, Bergmann J, Singer W, Kohler A. Interhemispheric connections shape subjective experience of bistable motion. Curr Biol. 2011;21(17):1494–9.

    Article  CAS  PubMed  Google Scholar 

  96. Blais M, Amarantini D, Albaret JM, Chaix Y, Tallet J. Atypical inter-hemispheric communication correlates with altered motor inhibition during learning of a new bimanual coordination pattern in developmental coordination disorder. Dev Sci. 2018;21(3):e12563. https://doi.org/10.1111/desc.12563.

    Article  PubMed  Google Scholar 

  97. Sainburg RL. Convergent models of handedness and brain lateralization. Front Psychol. 2014;5:1092. https://doi.org/10.3389/fpsyg.2014.01092.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Knyazeva MG. Splenium of corpus callosum: patterns of interhemispheric interaction in children and adults. Neural Plast. 2013;639430.

  99. • Yu JJ, Burnett AF, Sit CH. Motor skill intervention in children with developmental coordination disorder: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2018;10:2076–99 A very comprehensive overview of current therapy approaches in DCD.

    Article  Google Scholar 

  100. • Smits-Engelsman B, Vinçon S, Blank R, Quadrado VH, Polatajko H, Wilson PH. Evaluating the evidence for motor-based interventions in developmental coordination disorder: a systematic review and meta-analysis. Res Dev Disabil. 2018;74:72–102 A very comprehensive overview of current therapy approaches in DCD.

    Article  PubMed  Google Scholar 

  101. Lucas BR, Elliott EJ, Coggan S, et al. Interventions to improve gross motor performance in children with neurodevelopmental disorders: a meta-analysis. BMC Pediatr. 2016;16(1):193. https://doi.org/10.1186/s12887-016-0731-6 Published 2016 Nov 29.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Maidan I, Rosenberg-Katz K, Jacob Y, Giladi N, Deutsch JE, Hausdorff JM, et al. Disparate effects of training on brain activation in Parkinson’s disease. Neurology. 2017;89:1804–10.

    Article  PubMed  Google Scholar 

  103. Maidan I, Nieuwhof F, Bernad-Elazari H, Bloem B, Giladi N, Hausdorff JM, et al. Evidence of differential effects of 2 forms of exercise on prefrontal plasticity during walking in Parkinson’s disease. Neruorehab Neural Repair. 2018;32:200–8.

    Article  Google Scholar 

  104. McIsaac TL, Lamberg EM, Muratori LM. Building a framework for a dual task taxonomy. Biomed Res Int. 2015;2015:591475–10. https://doi.org/10.1155/2015/591475.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Fritz NE, Cheek FM, Nichols-Larsen DS. Motor-cognitive dual-task training in persons with neurologic disorders: a systematic review. J Neurol Phys Ther. 2015;39(3):142–53.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Plummer P, Zukowski LA, Giuliani C, Hall AM, Zurakowski D. Effects of physical exercise interventions on gait-related dual-task interference in older adults: a systematic review and meta-analysis. Gerontology. 2015;62(1):94–117.

    Article  PubMed  Google Scholar 

  107. Bock O, Akpinar S. Performance of older persons in a simulated shopping task is influenced by priming with age stereotypes. PLoS One. 2016;11(9):e0160739. https://doi.org/10.1371/journal.pone.0160739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Janouch C, Drescher U, Wechsler K, Haeger M, Bock O, Voelcker-Rehage C. Cognitive—motor interference in an ecologically valid street crossing scenario. Front Psychol. 2018;9:602. https://doi.org/10.3389/fpsyg.2018.00602.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Shema-Shiratzky S, Brozgol M, Cornejo-Thumm P, Geva-Dayan K, Rotstein M, Leitner Y. … Mirelman A. Virtual reality training to enhance behavior and cognitive function among children with attention-deficit/hyperactivity disorder: brief report. Dev Neurorehab 2018:21:1–6.

    Article  Google Scholar 

  110. Masters RSW, Maxwell JP. The theory of reinvestment. Int Rev Sport Exer P. 2008;1:160–83.

    Article  Google Scholar 

  111. Yu S-H, Hwang I-S, Huang C-Y. Neuronal responses to a postural dual-task with differential attentional prioritizations: compensatory resource allocation with healthy aging. J Gerontol, B, gby 2018.

  112. Huang C-Y, Chen Y-A, HwangI-S, Wu R-M. Improving dual-task control with a posture-second strategy in early-stage Parkinson disease. Arch Phys Med Rehabil. 2018;99(8):1540–6.

    Article  PubMed  Google Scholar 

  113. Loeffler J, Raab M, Canal-Bruland R. A lifespan perspective on embodied cognition. Front Psychol. 2016;7:1–6.

    Article  Google Scholar 

  114. Schaefer S. The ecological approach to cognitive–motor dual-tasking: findings on the effects of expertise and age. Front Psychol. 2014;5:1–9.

    Google Scholar 

  115. •• Wulf G, Lewthwaite R. Optimizing performance through intrinsic motivation and attention for learning: the OPTIMAL theory of motor learning. Psychon Bull Rev. 2016;23:1382–414 This paper looks at the interaction of autonomy, expectations, and attention on motor learning.

    Article  PubMed  Google Scholar 

  116. Mornell, A, Wulf G. External focus of attention enhances musical performance. J Res Music Educat (in press).

  117. Montes J, Wulf G, Navalta JW. Maximal aerobic capacity can be increased by enhancing performers’ expectancies. J Sports Med Phys Fitness. 2018;58:744–9.

    PubMed  Google Scholar 

  118. •• Lewthwaite R, Winstein CJ, Lane CJ, Blanton S, Wagenheim BR, Nelson MA, et al. Accelerating stroke recovery: secondary outcomes from the Interdisciplinary Comprehensive Arm Rehabilitation Evaluation (ICARE) clinical trial. Neurorehabil Neural Repair. 2018;32:150–1652 This study shows the importance of motivation on the motor learning process.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadja Schott.

Ethics declarations

Conflict of Interest

The author declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Motor Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schott, N. Dual-Task Performance in Developmental Coordination Disorder (DCD): Understanding Trade-offs and Their Implications for Training. Curr Dev Disord Rep 6, 87–101 (2019). https://doi.org/10.1007/s40474-019-00163-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40474-019-00163-z

Keywords

Navigation