Skip to main content

Advertisement

Log in

What Is Comorbidity and Why Does It Matter in Neurodevelopmental Disorders?

  • Comorbidities (DM Dewey, Section Editor)
  • Published:
Current Developmental Disorders Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

To provide an overview of the concept of comorbidity, research that supports the common co-occurrence of neurodevelopmental disorders and directions for future research.

Recent Findings

Neurodevelopmental disorders including attention-deficit/hyperactivity disorder, developmental coordination disorder, autism spectrum disorder, and learning disorders co-occur more commonly than would be expected by chance. The potential causes for this comorbidity suggested in the research literature are genetic, epigenetic, neurobiological, and environmental.

Summary

Directions for research such as imaging genetics and epidemiological studies examining prenatal environmental exposures could increase our understanding of the mechanism underlying the high rates of symptom comorbidity among neurodevelopmental disorders. This in turn could lead to improvements in diagnosis, a better understanding of the course of these disorders, and the development of more effective treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders, 5th edition (5th ed.). Arlington: American Psychiatric Publishing; 2013.

  2. Reiss AL. Childhood developmental disorders: an academic and clinical convergence point for psychiatry, neurology, psychology and pediatrics. J Child Psychol Psychiatry. 2009;50(1–2):87–98.

    PubMed  PubMed Central  Google Scholar 

  3. Johnson MR, Shorvon SD. Heredity in epilepsy: neurodevelopment, comorbidity, and the neurological trait. Epilepsy Behav. 2011;22(3):421–7.

    PubMed  Google Scholar 

  4. Rapoport JL, Giedd JN, Gogtay N. Neurodevelopmental model of schizophrenia: update 2012. Mol Psychiatry. 2012;17(12):1228–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bloom B, Cohen RA, Freeman G. Summary health statistics for U.S. children: National Health Interview Survey, 2010. Vital Health Stat 10. 2011;250:1–80.

    Google Scholar 

  6. Atladottir HO, Gyllenberg D, Langridge A, Sandin S, Hansen SN, Leonard H, et al. The increasing prevalence of reported diagnoses of childhood psychiatric disorders: a descriptive multinational comparison. Eur Child Adolesc Psychiatry. 2014;24(2):173–83.

    PubMed  Google Scholar 

  7. Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014;13(7):330–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gillberg C, Rasmussen P. Perceptual, motor and attentional deficits in seven-year-old children: background factors. Dev Med Child Neurol. 1982;24:752–70.

    CAS  PubMed  Google Scholar 

  9. Anderson JC, Williams S, McGee R, Silva PA. DSM-III disorders in preadolescent children: prevalence in a large sample from the general population. Arch Gen Psychiatry. 1987;44(1):69–76.

    CAS  PubMed  Google Scholar 

  10. Gillberg C. Perceptual, motor and attentional deficits in Swedish primary school children. Some child psychiatric aspects. J Child Psychol Psychiatry. 1983;24(3):377–403.

    CAS  PubMed  Google Scholar 

  11. Feinstein AR. The pre-therapeutic classification of comorbidity in chronic disease. J Chronic Dis. 1970;23(7):455–68.

    CAS  PubMed  Google Scholar 

  12. Angold A, Costello EJ, Erkanli A. Comorbidity. J Child Psychol Psychiatry. 1999;40(1):57–87.

    CAS  PubMed  Google Scholar 

  13. Clements DS. Minimal brain dysfunction in children. NINDB Monograph No 3. 1966. 76–349.

  14. Capute AJ, Palmer FB. A pediatric overview of the spectrum of developmental disabilities. J Dev Behav Pediatr. 1980;1(2):66–9.

    CAS  PubMed  Google Scholar 

  15. Capute PJ, Capute AJ, Accardo PJ. A neurodevelopmental perspective on the continuum of developmental disabilities. In: Capute AJ, Accardo PJ, editors. Developmental disabilities in infancy and childhood: neurodevelopmental diagnosis and treatment (3 Ed, Vol 1). Baltimore: Paul H Brooks Publishing Co; 2007. p. 3–23.

    Google Scholar 

  16. Gilger JW, Kaplan BJ. Atypical brain development: a conceptual framework for understanding developmental learning disabilities. Dev Neuropsychol. 2001;20(2):465–8.

    CAS  PubMed  Google Scholar 

  17. Gillberg C. The ESSENCE in child psychiatry: early symptomatic syndromes eliciting neurodevelopmental clinical examinations. Res Dev Disabil. 2010;31(6):1543–51.

    PubMed  Google Scholar 

  18. Moreno-De-Luca A, Myers SM, Challman TD, Moreno-De-Luca D, Evans DW, Ledbetter DH. Developmental brain dysfunction: revival and expansion of old concepts based on new genetic evidence. Lancet Neurol. 2013;12(4):406–14.

    PubMed  PubMed Central  Google Scholar 

  19. Cantell MH, Smyth MM, Ahonen TP. Two distinct pathways for developmental coordination disorder: persistence and resolution. Hum Mov Sci. 2003;22:413–31.

    PubMed  Google Scholar 

  20. Harpin VA. The effect of ADHD on the life of an individual, their family, and community from preschool to adult life. Arch Dis Child. 2005;90(Suppl1):i2–7.

    PubMed  PubMed Central  Google Scholar 

  21. Gotham K, Pickles A, Lord C. Trajectories of autism severity in children using standardized ADOS scores. Pediatrics. 2012;130(5):e1278–84.

    PubMed  PubMed Central  Google Scholar 

  22. • Barnevik Olsson M, Lundström S, Westerlund J, Giacobini MB, Gillberg C, Fernell E. Preschool to school in autism: neuropsychiatric problems 8 years after diagnosis at 3 years of age. J Autism Dev Disord. 2016;46(8):2749–55 This paper found that at 11 years of age, 90% children diagnosed with ASD prior to 4.5 years met criteria for at least one neurodevelopmental disorder: ASD, ADHD, DCD or learning disorder.

    CAS  PubMed  Google Scholar 

  23. Jensen M, Girirajan S. Mapping a shared genetic basis for neurodevelopmental disorders. Genome Med. 2017;9(1):109.

    PubMed  PubMed Central  Google Scholar 

  24. Lichtenstein P, Carlström E, Råstam M, Gillberg C, Anckarsäter H. The genetics of autism spectrum disorders and related neuropsychiatric disorders in childhood. Am J Psychiatry. 2010;167(11):1357–63.

    PubMed  Google Scholar 

  25. •• Jokiranta-Olkoniemi E, Cheslack-Postava K, Sucksdorff D, Suominen A, Gyllenberg D, Chudal R, et al. Risk of psychiatric and neurodevelopmental disorders among siblings of probands with autism spectrum disorders. JAMA Psychiatry. 2016;73(6):622–9 This epidemiological study included children with ASD born in Finland from 1987-2005 and diagnosed with ASD by December 2007. Siblings were born between 1977 and 2005 and were diagnosed between 1987 and 2009. The relative risk of having a sibling diagnosed with any psychiatric or neurodevelopmental disorder as 2.5 times greater for among chlldren diagnosed with ASD compared to controls. The largest associations were for child-onset disorders including ASD, tic disorders, ADHD, learning and coordination disorders, intellectual disability, conduct and oppositional disorders and emotional disorders. These findings support the contention that several psychiatric and neurodevelopmental disorders have common risk factors.

    PubMed  Google Scholar 

  26. •• Jokiranta-Olkoniemi E, Cheslack-Postava K, Joelsson P, Suominen A, Brown AS, Sourander A. Attention-deficit/hyperactivity disorder and risk for psychiatric and neurodevelopmental disorders in siblings. Psychol Med. 2018. This large epidemiological study included every children born in Finland from 1991-2005 and diagnosed with ADHD between 2005-2011. Results revealed that siblings of children with ADHD were at higher risk of child onset disorders including ADHD, ASD, DCD, learning disorders, intellectual disability, conduct and oppositional disorders and emotional and social interaction disorders. These findings provide support for the idea that neurodevelopmental disorders may have common etiologies.

  27. World Health Organization. ICD 11: International Classification of Diseases 11th Revision [Internet]. 2018 [cited 2018 Jun 20]. Available from: https://icd.who.int

  28. Cruddace SA, Riddell PM. Attention processes in children with movement difficulties, reading difficulties or both. J Abnorm Child Psychol. 2006;34(5):675–83.

    CAS  PubMed  Google Scholar 

  29. Yeargin-Allsopp M, Boyle C, Braun KVN, Trevathan E. The epidemiology of developmental disabilities. In: Capute AJ, Accardo PJ, editors. Developmental disabilities in infancy and childhood: neurodevelopmental diagnosis and treatment (3 Ed, Vol 1). 2007. p. 61–104.

  30. Visser J. Developmental coordination disorder: a review of research on subtypes and comorbidities. Hum Mov Sci. 2003;22(4–5):479–93.

    CAS  PubMed  Google Scholar 

  31. Kadesjö B, Gillberg C. The comorbidity of ADHD in the general population of Swedish school-age children. J Child Psychol Psychiatry. 2001;42(4):487–92.

    PubMed  Google Scholar 

  32. Piek JP, Pitcher TM, Hay D. a. Motor coordination and kinaesthesis in boys with attention deficit-hyperactivity disorder. Dev Med Child Neurol. 1999;41(3):159–65.

    CAS  PubMed  Google Scholar 

  33. Querne L, Berquin P, Vernier-Hauvette MP, Fall S, Deltour L, Meyer ME, et al. Dysfunction of the attentional brain network in children with developmental coordination disorder: a fMRI study. Brain Res. 2008;1244:89–102.

    CAS  PubMed  Google Scholar 

  34. Lahey BB, Van Hulle CA, Singh AL, Waldman ID, Rathouz PJ. Higher-order genetic and environmental structure of prevalent forms of child and adolescent psychopathology. Arch Gen Psychiatry 2011;68(2):181–189.

    PubMed  PubMed Central  Google Scholar 

  35. Kaplan BJ, Wilson BN, Dewey D, Crawford SG. DCD may not be a discrete disorder. Hum Mov Sci. 1998;17(4–5):471–90.

    Google Scholar 

  36. Pieters S, de Block K, Scheiris J, Eyssen M, Desoete A, Deboutte D, et al. How common are motor problems in children with a developmental disorder: rule or exception? Child Care Health Dev. 2012;38(1):139–45.

    CAS  PubMed  Google Scholar 

  37. Dewey D, Kaplan BJ, Crawford SG, Wilson BN. Developmental coordination disorder: associated problems in attention, learning, and psychosocial adjustment. Hum Mov Sci. 2002;21(5–6):905–18.

    PubMed  Google Scholar 

  38. Hill EL, Bishop DVM, Nimmo-Smith I. A dyspraxic deficit in specific language impairment and developmental coordination disorder? Evidence from hand and arm movements. Dev Med Child Neurol. 1998;17(6):388–95.

    Google Scholar 

  39. Pitcher TM, Piek JP, Hay DA. Fine and gross motor ability in males with ADHD. Dev Med Child Neurol. 2007;45(8):525–35.

    Google Scholar 

  40. Taurines R, Schmitt J, Renner T, Conner AC, Warnke A, Romanos M. Developmental comorbidity in attention-deficit/hyperactivity disorder. Atten Defic Hyperact Disord. 2012;4(3):115–39.

    PubMed  Google Scholar 

  41. Taurines R, Schwenck C, Westerwald E, Sachse M, Siniatchkin M, Freitag C. ADHD and autism: differential diagnosis or overlapping traits? A selective review. Atten Defic Hyperact Disord. 2012;4(3):115–39.

    PubMed  Google Scholar 

  42. Willcutt EG, Pennington BF, Duncan L, Smith SD, Keenan JM, Wadsworth S, et al. Understanding the complex etiologies of developmental disorders: behavioral and molecular genetic approaches. J Dev Behav Pediatr. 2010;31(7):533–44.

    PubMed  PubMed Central  Google Scholar 

  43. Davis NO, Kollins SH. Treatment for co-occurring attention deficit/hyperactivity disorder and autism spectrum disorder. Neurotherapeutics. 2012;9(3):518–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dewey D, Cantell M, Crawford SG. Motor and gestural performance in children with autism spectrum disorders, developmental coordination disorder, and/or attention deficit hyperactivity disorder. J Int Neuropsychol Soc. 2007;13(2):246–56.

    PubMed  Google Scholar 

  45. Green D, Charman T, Pickles A, Chandler S, Loucas T, Simonoff E, et al. Impairment in movement skills of children with autistic spectrum disorders. Dev Med Child Neurol. 2009;51(4):311–6.

    PubMed  Google Scholar 

  46. Kaplan B, Crawford S, Cantell M, Kooistra L, Dewey D. Comorbidity, co-occurrence, continuum: what’s in a name? Child Care Health Dev. 2006;32(6):723–31.

    CAS  PubMed  Google Scholar 

  47. Zhang Y, Haraksingh R, Grubert F, Abyzov A, Gerstein M, Weissman S, et al. Child development and structural variation in the human genome. Child Dev. 2013;84(1):34–48.

    PubMed  Google Scholar 

  48. van Mil NH, Steegers-Theunissen RPM, Bouwland-Both MI, Verbiest MMPJ, Rijlaarsdam J, Hofman A, et al. DNA methylation profiles at birth and child ADHD symptoms. J Psychiatr Res. 2014;49(1):51–9.

    PubMed  Google Scholar 

  49. •• Walton E, Pingault JB, CAM C, Gaunt TR, Relton CL, Mill J, et al. Epigenetic profiling of ADHD symptoms trajectories: a prospective, methylome-wide study. Mol Psychiatry. 2017;22(2):250–6 Results revealed that DNA methylation at birth differentiated ADHD trajectories across multiple genomic locations, including probes annotated to SKI (involved in neural tube development), ZNF544 (previously implicated in ADHD), ST3GAL3 (linked to intellectual disability) and PEX2 (related to perixosomal processes). None of these probes maintained an association with ADHD trajectories at age 7. These findings highlight the potential importance of DNA methylation variation in genes related to neurodevelopment.

    CAS  PubMed  Google Scholar 

  50. Richter M, Murtaza N, Scharrenberg R, White SH, Johanns O, Walker S, et al. Altered TAOK2 activity causes autism-related neurodevelopmental and cognitive abnormalities through RhoA signaling. Mol Psychiatry. 2018.

  51. Elia J, Gai X, Xie HM, Perin JC, Geiger E, Glessner JT, et al. Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes. Mol Psychiatry. 2010;15(6):637–46.

    CAS  PubMed  Google Scholar 

  52. • Mosca SJ, Langevin LM, Dewey D, Micheil Innes A, Lionel AC, Marshall CC, et al. Copy-number variations are enriched for neurodevelopmental genes in children with developmental coordination disorder. J Med Genet. 2016;53(12):812–9 This is the first paper to show that genes play an important role in developmental coordination disorder.

    CAS  PubMed  Google Scholar 

  53. Lionel AC, Crosbie J, Barbosa N, Goodale T, Thiruvahindrapuram B, Rickaby J, et al. Rare copy number variation discovery and cross-disorder comparisons identify risk genes for ADHD. Sci Transl Med. 2011;3(95):95ra75.

    CAS  PubMed  Google Scholar 

  54. Glessner JT, Connolly JJM, Hakonarson H. Rare genomic deletions and duplications and their role in neurodevelopmental disorders. Curr Top Behav Neurosci. 2012;12:345–60.

    PubMed  Google Scholar 

  55. Kaminsky EB, Kaul V, Paschall J, Church DM, Bunke B, Kunig D, et al. An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. Genet Med. 2011;13(9):777–84.

    PubMed  PubMed Central  Google Scholar 

  56. Girirajan S, Brkanac Z, Coe BP, Baker C, Vives L, Vu TH, et al. Relative burden of large CNVs on a range of neurodevelopmental phenotypes. PLoS Genet. 2011;7(11):e1002334.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen ES, Gigek CO, Rosenfeld JA, Diallo AB, Maussion G, Chen GG, et al. Molecular convergence of neurodevelopmental disorders. Am J Hum Genet. 2014;95(5):490–508.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cristino AS, Williams SM, Hawi Z, An J-Y, Bellgrove MA, Schwartz CE, et al. Neurodevelopmental and neuropsychiatric disorders represent an interconnected molecular system. Mol Psychiatry. 2014;19(3):294–301.

    CAS  PubMed  Google Scholar 

  59. Viding E, Williamson D, Hariri A. Developmental imaging genetics: challenges and promises for translational research. Dev Psychopathol. 2006;18(3):877–92.

    PubMed  Google Scholar 

  60. Langevin LM, Macmaster FP, Crawford S, Lebel C, Dewey D. Common white matter microstructure alterations in pediatric motor and attention disorders. J Pediatr. 2014;164(5):1157–64.

    PubMed  Google Scholar 

  61. Langevin LM, Macmaster FP, Dewey D. Distinct patterns of cortical thinning in concurrent motor and attention disorders. Dev Med Child Neurol. 2015 Aug;57(3):257–64.

    PubMed  Google Scholar 

  62. McLeod KR, Langevin LM, Goodyear BG, Dewey D. Functional connectivity of neural motor networks is disrupted in children with developmental coordination disorder and attention-deficit/hyperactivity disorder. Neuroimage Clin. 2014;4:566–75.

    PubMed  PubMed Central  Google Scholar 

  63. McLeod KR, Langevin LM, Dewey D, Goodyear BG. Atypical within- and between-hemisphere motor network functional connections in children with developmental coordination disorder and attention-deficit/hyperactivity disorder. Neuroimage Clin. 2016;12:157–64.

    PubMed  PubMed Central  Google Scholar 

  64. Dehue T, Bijl D, de Winter M, Scheepers F, Vanheule S, van Os J, et al. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults. Lancet Psychiatry. 2017;4(6):438–9.

    PubMed  Google Scholar 

  65. Zeng K, Kang J, Ouyang G, Li J, Han J, Wang Y, et al. Disrupted brain network in children with autism spectrum disorder. Sci Rep. 2017;7(1):16253.

    PubMed  PubMed Central  Google Scholar 

  66. Thornton S, Bray S, Langevin LM, Dewey D. Functional brain correlates of motor response inhibition in children with developmental coordination disorder and attention deficit/hypractivity disorder. Hum Mov Sci. 2018;59:134–42.

    PubMed  Google Scholar 

  67. Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV. Human exposure to bisphenol A (BPA). Reprod Toxicol. 2007;24(2):139–77.

    CAS  PubMed  Google Scholar 

  68. Health Canada. Third report on human biomonitoring of environmental chemicals in Canada: results of the canadian health measures survey cycle 3 (2012-2013). [Internet]. 2015 [cited 2016 Aug 28]. Available from: http://www.hc-sc.gc.ca/ewh-semt/pubs/contaminants/chms-ecms-cycle3/index-eng.php

  69. World Health Organization. Human biomonitoring: facts and figures. Copenhagen; 2015.

  70. Shapiro GD, Dodds L, Arbuckle TE, Ashley-Martin J, Fraser W, Fisher M, et al. Exposure to phthalates, bisphenol A and metals in pregnancy and the association with impaired glucose tolerance and gestational diabetes mellitus: the MIREC study. Environ Int. 2015;83:63–71.

    CAS  PubMed  Google Scholar 

  71. Ejaredar M, Nyanza EC, Ten Eycke K, Dewey D. Phthalate exposure and childrens neurodevelopment: a systematic review. Environ Res 2015;142:51–60.

    CAS  PubMed  Google Scholar 

  72. Ejaredar M, Lee Y, Roberts DJ, Sauve R, Dewey D. Bisphenol A exposure and children’s behavior: a systematic review. J Expo Sci Environ Epidemiol. 2017;27(2):175–83.

    CAS  PubMed  Google Scholar 

  73. Barouki R, Gluckman PD, Grandjean P, Hanson M, Heindel JJ. Developmental origins of non-communicable disease: implications for research and public health. Environ Health. 2012;11:42.

    PubMed  PubMed Central  Google Scholar 

  74. Porrini S, Belloni V, Della SD, Farabollini F, Giannelli G, Dessi-Fulgheri F. Early exposure to a low dose of bisphenol A affects socio-sexual behavior of juvenile female rats. Brain Res Bull. 2005;65(3):261–6.

    CAS  PubMed  Google Scholar 

  75. Fujimoto T, Kubo K, Aou S. Prenatal exposure to bisphenol a impairs sexual differentiation of exploratory behavior and increases depression-like behavior in rats. Brain Res. 2006;1068(1):49–55.

    CAS  PubMed  Google Scholar 

  76. Matsuda S, Matsuzawa D, Ishii D, Tomizawa H, Sutoh C, Nakazawa K, et al. Effects of perinatal exposure to low dose of bisphenol A on anxiety like behavior and dopamine metabolites in brain. Prog Neuro-Psychopharmacol Biol Psychiatry. 2012;39(2):273–9.

    CAS  Google Scholar 

  77. Bale TL, Baram TZ, Brown AS, Goldstein JM, Insel TR, McCarthy MM, et al. Early life programming and neurodevelopmental disorders. Biol Psychiatry. 2010;68:314–9.

    PubMed  PubMed Central  Google Scholar 

  78. Darney S, Fowler B, Grandjean P, Heindel J, Mattison D, Slikker W Jr. Prenatal programming and toxicity II (PPTOX II): role of environmental stressors in the developmental origins disease. Reprod Toxicol. 2011;31(3):271.

    CAS  PubMed  Google Scholar 

  79. Hodyl NA, Roberts CT, Bianco-Miotto T. Cord blood DNA methylation biomarkers for predicting neurodevelopmental outcomes. Genes (Basel). 2016;7(12)

    PubMed Central  Google Scholar 

  80. Kinch CD, Ibhazehiebo K, Jeong J-H, Habibi HR, Kurrasch DM. Low-dose exposure to bisphenol A and replacement bisphenol S induces precocious hypothalamic neurogenesis in embryonic zebrafish. Proc Natl Acad Sci U S A. 2015;112(5):1475–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Xu X-H, Wang Y-M, Zhang J, Luo Q-Q, Ye Y-P, Ruan Q. Perinatal exposure to bisphenol-A changes N-methyl-D-aspartate receptor expression in the hippocampus of male rat offspring. Environ Toxicol Chem. 2010;29(1):176–81.

    CAS  PubMed  Google Scholar 

  82. Poimenova A, Markaki E, Rahiotis C, Kitraki E. Corticosterone-regulated actions in the rat brain are affected by perinatal exposure to low dose of bisphenol A. Neuroscience. 2010;167(3):742–9.

    Google Scholar 

  83. Dewey D, Reardon A, Grohs MN, Liu J, Ten Eycke KD, Ejaredar M, et al. Effects of prenatal exposure to environmental neurotoxicants on health and neurodevelopment. 2018 ISES-ISEE joint annual meeting. 2018.

  84. Trasande L, Zoeller RT, Hass U, Kortenkamp A, Grandjean P, Myers JP, et al. Burden of disease and costs of exposure to endocrine disrupting chemicals in the European Union: an updated analysis. Andrology. 2016;4(4):565–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Jensen PS, Hinshaw SP, Kraemer HC, Lenora N, Newcorn JH, Abikoff HB, et al. ADHD comorbidity findings from the MTA study: comparing comorbid subgroups. J Am Acad Child Adolesc Psychiatry. 2001;40(2):147–58.

    CAS  PubMed  Google Scholar 

  86. Crawford SG, Dewey D. Co-occurring disorders: a possible key to visual perceptual deficits in children with developmental coordination disorder? Hum Mov Sci. 2008;27(1):154–69.

    CAS  PubMed  Google Scholar 

  87. Crawford SG, Kaplan BJ, Dewey D. Effects of coexisting disorders on cognition and behavior in children with ADHD. J Atten Disord. 2006;10(2):192–9.

    PubMed  Google Scholar 

  88. Casey BJ, Soliman F, Bath KG, Glatt CE. Imaging genetics and development: challenges and promises. Hum Brain Mapp. 2010;31:838–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Durston S. Imaging genetics in ADHD. NeuroImage. 2010;53(3):832–8.

    CAS  PubMed  Google Scholar 

  90. Pine DS, Ernst M, Leibenluft E. Imaging-genetics applications in child psychiatry. J Am Acad Child Adolesc Psychiatry. 2010;49(8):772–82.

    PubMed  PubMed Central  Google Scholar 

  91. Flint J, Timpson N, Munaf M. Assessing the utility of intermediate phenotypes for genetic mapping of psychiatric disease. Trends Neurosci. 2014;37(12):733–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Rasetti R, Weinberger DR. Intermediate phenotypes in psychiatric disorders. Curr Opin Genet Dev. 2011;21(3):340–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry. 2003;160(4):636–45.

    PubMed  Google Scholar 

  94. Liu J, Calhoun VD. A review of multivariate analyses in imaging genetics. Front Neuroinform. 2014;8:29.

    PubMed  PubMed Central  Google Scholar 

  95. Sui J, He H, Yu Q, Chen J, Rogers J, Pearlson GD, et al. Combination of resting state fMRI, DTI, and sMRI data to discriminate schizophrenia by N-way MCCA + jICA. Front Hum Neurosci. 2013;7:235.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Dewey.

Ethics declarations

Conflict of Interest

The author declares that there are no competing interests.

Human and Animal Rights and Informed Consent

These studies were approved by the Conjoint Health Research Ethics Board of the University of Calgary and informed consent was obtained from study participants.

Additional information

This article is part of the Topical Collection on Comorbidities

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dewey, D. What Is Comorbidity and Why Does It Matter in Neurodevelopmental Disorders?. Curr Dev Disord Rep 5, 235–242 (2018). https://doi.org/10.1007/s40474-018-0152-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40474-018-0152-3

Keywords

Navigation