Skip to main content

Advertisement

Log in

Cannabis Use: Neurobiological, Behavioral, and Sex/Gender Considerations

  • Addictions (M Potenza and M Brand, Section Editors)
  • Published:
Current Behavioral Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To summarize the current literature on the effects of cannabinoids in humans and to discuss the existing literature on the sex- and gender-related differences in the effects of cannabinoids.

Recent Findings

Cannabis and its constituent cannabinoids are associated with risk of addiction, cognitive deficits, and mood/psychotic disorders. Preclinical and emerging clinical data suggest greater sensitivity to the effects of cannabinoids in women.

Summary

Cannabis is one of the most commonly used drugs with increasing rates of use. Women in particular may be at a greater risk of adverse outcomes given the previously described “telescoping effect” of substance use in women. Human data examining the sex- and gender-related differences in the effects of cannabinoids and factors underlying these differences are very limited. This represents a critical gap in the literature and needs to be systematically examined in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Center for Behavioral Health Statistics and Quality. (2017). 2016 National survey on drug use and health: detailed tables. Substance abuse and mental health services administration, Rockville, MD.

  2. Zakiniaeiz Y, Cosgrove KP, Potenza MN, Mazure CM. Balance of the sexes: addressing sex differences in preclinical research. Yale J Biol Med. 2016;89(2):255–9.

    PubMed  PubMed Central  Google Scholar 

  3. Chapman C, Slade T, Swift W, Keyes K, Tonks Z, Teesson M. Evidence for sex convergence in prevalence of cannabis use: a systematic review and meta-regression. J Stud Alcohol Drugs. 2017;78(3):344–52.

    PubMed  PubMed Central  Google Scholar 

  4. Johnson RM, Fairman B, Gilreath T, Xuan Z, Rothman EF, Parnham T, et al. Past 15-year trends in adolescent marijuana use: differences by race/ethnicity and sex. Drug Alcohol Depend. 2015;155:8–15.

    PubMed  PubMed Central  Google Scholar 

  5. Substance Abuse and Mental Health Services Administration. (2007). Results from the 2006 national Survey on drug use and health: National findings (Office of Applied Studies, N.S.H.)

  6. Pacek LR, Mauro PM, Martins SS. Perceived risk of regular cannabis use in the United States from 2002 to 2012: differences by sex, age, and race/ethnicity. Drug Alcohol Depend. 2015;149:232–44.

    PubMed  PubMed Central  Google Scholar 

  7. Leghissa A, Hildenbrand ZL, Schug KA. A review of methods for the chemical characterization of cannabis natural products. J Sep Sci. 2018;41(1):398–415.

    CAS  PubMed  Google Scholar 

  8. Ashton CH. Pharmacology and effects of cannabis: a brief review. Br J Psychiatry. 2001;178(2):101–6.

    CAS  PubMed  Google Scholar 

  9. Zuardi A et al (2017). The anxiolytic effects of cannabidiol (CBD), in Handbook of Cannabis and Related Pathologies. , Elsevier. p. e131-e139

  10. O’Connell BK, Gloss D, Devinsky O. Cannabinoids in treatment-resistant epilepsy: a review. Epilepsy Behav. 2017;70:341–8.

    PubMed  Google Scholar 

  11. McGuire P, Robson P, Cubala WJ, Vasile D, Morrison PD, Barron R, et al. Cannabidiol (CBD) as an adjunctive therapy in schizophrenia: a multicenter randomized controlled trial. Am J Psychiatr. 2018;175(3):225–31.

    PubMed  Google Scholar 

  12. Administration U.S.F.A.D. (2018). FDA approves first drug comprised of an active ingredient derived from marijuana to treat rare, severe forms of epilepsy. FDA News Release

  13. Russo EB. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br J Pharmacol. 2011;163(7):1344–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sloan ME, Gowin JL, Ramchandani VA, Hurd YL, le Foll B. The endocannabinoid system as a target for addiction treatment: trials and tribulations. Neuropharmacology. 2017;124:73–83.

    CAS  PubMed  Google Scholar 

  15. Parsons LH, Hurd YL. Endocannabinoid signalling in reward and addiction. Nat Rev Neurosci. 2015;16(10):579–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Grotenhermen F. Pharmacology of cannabinoids. Neuro Endocrinol Lett. 2004;25(1–2):14–23.

    CAS  PubMed  Google Scholar 

  17. Sewell RA, Schnakenberg A, Elander J, Radhakrishnan R, Williams A, Skosnik PD, et al. Acute effects of THC on time perception in frequent and infrequent cannabis users. Psychopharmacology. 2013;226(2):401–13.

    CAS  PubMed  Google Scholar 

  18. D'Souza DC, Ranganathan M, Braley G, Gueorguieva R, Zimolo Z, Cooper T, et al. Blunted psychotomimetic and amnestic effects of delta-9-tetrahydrocannabinol in frequent users of cannabis. Neuropsychopharmacology. 2008;33(10):2505–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. D'Souza DC, et al. Effects of haloperidol on the behavioral, subjective, cognitive, motor, and neuroendocrine effects of delta-9-tetrahydrocannabinol in humans. Psychopharmacology. 2008;198(4):587–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. D'Souza DC, Perry E, MacDougall L, Ammerman Y, Cooper T, Wu YT, et al. The psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy individuals: implications for psychosis. Neuropsychopharmacology. 2004;29(8):1558–72.

    CAS  PubMed  Google Scholar 

  21. Haney M, Ramesh D, Glass A, Pavlicova M, Bedi G, Cooper ZD. Naltrexone maintenance decreases cannabis self-administration and subjective effects in daily cannabis smokers. Neuropsychopharmacology. 2015;40(11):2489–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ramesh D, Haney M, Cooper ZD. Marijuana's dose-dependent effects in daily marijuana smokers. Exp Clin Psychopharmacol. 2013;21(4):287–93.

    PubMed  PubMed Central  Google Scholar 

  23. Haney M, Bisaga A, Foltin RW. Interaction between naltrexone and oral THC in heavy marijuana smokers. Psychopharmacology. 2003;166(1):77–85.

    CAS  PubMed  Google Scholar 

  24. • Cooper ZD and Haney M, Investigation of sex-dependent effects of cannabis in daily cannabis smokers. Drug Alcohol Depend, 2014;136:85–91. This is a study demonstrating that women endorse greater cannabis-induced subjective effects suggestive of abuse liability compared to men.

    PubMed  PubMed Central  Google Scholar 

  25. Bedi G, Cooper ZD, Haney M. Subjective, cognitive and cardiovascular dose-effect profile of nabilone and dronabinol in marijuana smokers. Addict Biol. 2013;18(5):872–81.

    CAS  PubMed  Google Scholar 

  26. Kowal MA, van Steenbergen H, Colzato LS, Hazekamp A, van der Wee NJA, Manai M, et al. Dose-dependent effects of cannabis on the neural correlates of error monitoring in frequent cannabis users. Eur Neuropsychopharmacol. 2015;25(11):1943–53.

    CAS  PubMed  Google Scholar 

  27. • Boggs DL, et al. Clinical and preclinical evidence for functional interactions of cannabidiol and delta(9)-tetrahydrocannabinol. Neuropsychopharmacology. 2018;43(1):142–54 This is a comprehensive review of preclinical and clinical data on the interactive effects of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD).

    CAS  PubMed  Google Scholar 

  28. Hindocha C, Freeman TP, Schafer G, Gardener C, Das RK, Morgan CJA, et al. Acute effects of delta-9-tetrahydrocannabinol, cannabidiol and their combination on facial emotion recognition: a randomised, double-blind, placebo-controlled study in cannabis users. Eur Neuropsychopharmacol. 2015;25(3):325–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Haney M, Malcolm RJ, Babalonis S, Nuzzo PA, Cooper ZD, Bedi G, et al. Oral cannabidiol does not alter the subjective, reinforcing or cardiovascular effects of smoked cannabis. Neuropsychopharmacology. 2016;41(8):1974–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Morgan CJ, Freeman TP, Schafer GL, Curran HV. Cannabidiol attenuates the appetitive effects of Delta 9-tetrahydrocannabinol in humans smoking their chosen cannabis. Neuropsychopharmacology. 2010;35(9):1879–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tunbridge EM, Dunn G, Murray RM, Evans N, Lister R, Stumpenhorst K, et al. Genetic moderation of the effects of cannabis: catechol-O-methyltransferase (COMT) affects the impact of delta9-tetrahydrocannabinol (THC) on working memory performance but not on the occurrence of psychotic experiences. J Psychopharmacol. 2015;29(11):1146–51.

    CAS  PubMed  Google Scholar 

  32. • Sherif M, et al. Human laboratory studies on cannabinoids and psychosis. Biol Psychiatry. 2016;79(7):526–38 A comprehensive review of the acute effects of delta-9-tetrahydrocannabinol (THC) in humans from human laboratory studies.

    CAS  PubMed  Google Scholar 

  33. Cortes-Briones JA, Cahill JD, Skosnik PD, Mathalon DH, Williams A, Sewell RA, et al. The psychosis-like effects of delta-tetrahydrocannabinol are associated with increased cortical noise in healthy humans. Biol Psychiatry. 2015;78:805–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. D'Souza DC, et al. Delta-9-tetrahydrocannabinol effects in schizophrenia: implications for cognition, psychosis, and addiction. Biol Psychiatry. 2005;57(6):594–608.

    CAS  PubMed  Google Scholar 

  35. Mason O, Morgan CJA, Dhiman SK, Patel A, Parti N, Patel A, et al. Acute cannabis use causes increased psychotomimetic experiences in individuals prone to psychosis. Psychol Med. 2009;39(6):951–6.

    CAS  PubMed  Google Scholar 

  36. Mason OJ, Morgan CJM, Stefanovic A, Curran HV. The psychotomimetic states inventory (PSI): measuring psychotic-type experiences from ketamine and cannabis. Schizophr Res. 2008;103(1–3):138–42.

    PubMed  Google Scholar 

  37. Morgan CJ, Curran HV. Effects of cannabidiol on schizophrenia-like symptoms in people who use cannabis. Br J Psychiatry. 2008;192(4):306–7.

    PubMed  Google Scholar 

  38. Van der Veer N, Friday J. Persistent psychosis following the use of spice. Schizophr Res. 2011;130(1–3):285–6.

    PubMed  Google Scholar 

  39. Bassir Nia A, Medrano B, Perkel C, Galynker I, Hurd YL. Psychiatric comorbidity associated with synthetic cannabinoid use compared to cannabis. J Psychopharmacol. 2016;30(12):1321–30.

    PubMed  Google Scholar 

  40. Max Spaderna PA, D'Souza D Spicing things up: the effects of synthetic cannabinoids. (2013: resubmitted).

  41. Broyd SJ, van Hell HH, Beale C, Yücel M, Solowij N. Acute and chronic effects of cannabinoids on human cognition—a systematic review. Biol Psychiatry. 2016;79(7):557–67.

    CAS  PubMed  Google Scholar 

  42. • Crane NA, et al. Effects of cannabis on neurocognitive functioning: recent advances, neurodevelopmental influences, and sex differences. Neuropsychol Rev. 2013;23(2):117–37 A review of the acute and non-acute effects of cannabis on neurocognition with emphasis on neurodevelopmental issues and sex/gender differences.

    PubMed  Google Scholar 

  43. Ranganathan M, D'Souza D. The acute effects of cannabinoids on memory in humans: a review. Psychopharmacology. 2006;188:425–44.

    CAS  PubMed  Google Scholar 

  44. Downey LA, King R, Papafotiou K, Swann P, Ogden E, Boorman M, et al. The effects of cannabis and alcohol on simulated driving: influences of dose and experience. Accid Anal Prev. 2013;50:879–86.

    PubMed  Google Scholar 

  45. Lenne MG, et al. The effects of cannabis and alcohol on simulated arterial driving: influences of driving experience and task demand. Accid Anal Prev. 2010;42(3):859–66.

    PubMed  Google Scholar 

  46. Hartman RL, Brown TL, Milavetz G, Spurgin A, Pierce RS, Gorelick DA, et al. Cannabis effects on driving lateral control with and without alcohol. Drug Alcohol Depend. 2015;154:25–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hartman RL, Brown TL, Milavetz G, Spurgin A, Pierce RS, Gorelick DA, et al. Cannabis effects on driving longitudinal control with and without alcohol. J Appl Toxicol. 2016;36(11):1418–29.

    CAS  PubMed  Google Scholar 

  48. Arria AM, Wilcox HC, Caldeira KM, Vincent KB, Garnier-Dykstra LM, O'Grady KE. Dispelling the myth of “smart drugs”: cannabis and alcohol use problems predict nonmedical use of prescription stimulants for studying. Addict Behav. 2013;38(3):1643–50.

    PubMed  Google Scholar 

  49. Ranganathan M, Skosnik PD, D'Souza DC. Marijuana and madness: associations between cannabinoids and psychosis. Biol Psychiatry. 2016;79(7):511–3.

    PubMed  Google Scholar 

  50. Chadi N, Levy S, Radhakrishnan R, Ranganathan M, Weiner ASB. Introduction. In: Winters KCSKC, Kevin A, editors. Contemporary health issues on marijuana. Oxford: Oxford University Press; 2018.

    Google Scholar 

  51. Marwaha S, Winsper C, Bebbington P, Smith D. Cannabis use and hypomania in young people: a prospective analysis. Schizophr Bull. 2018;44(6):1267–274.

    PubMed Central  Google Scholar 

  52. Duperrouzel J, et al. The association between adolescent cannabis use and anxiety: a parallel process analysis. Addict Behav. 2017;78:107–13.

    PubMed  Google Scholar 

  53. Thames AD, Arbid N, Sayegh P. Cannabis use and neurocognitive functioning in a non-clinical sample of users. Addict Behav. 2014;39(5):994–9.

    PubMed  PubMed Central  Google Scholar 

  54. McHale S, Hunt N. Executive function deficits in short-term abstinent cannabis users. Hum Psychopharmacol. 2008;23(5):409–15.

    PubMed  Google Scholar 

  55. Pope HG Jr, et al. Neuropsychological performance in long-term cannabis users. Arch Gen Psychiatry. 2001;58(10):909–15.

    PubMed  Google Scholar 

  56. Fried PA, Watkinson B, Gray R. Neurocognitive consequences of marihuana--a comparison with pre-drug performance. Neurotoxicol Teratol. 2005;27(2):231–9.

    CAS  PubMed  Google Scholar 

  57. Meier MH et al. Persistent cannabis users show neuropsychological decline from childhood to midlife. Proc Natl Acad Sci, 2012;109(40):E2657–64.

    CAS  Google Scholar 

  58. Melchior M, Bolze C, Fombonne E, Surkan PJ, Pryor L, Jauffret-Roustide M. Early cannabis initiation and educational attainment: is the association causal? Data from the French TEMPO study. Int J Epidemiol. 2017;46(5):1641–50.

    PubMed  Google Scholar 

  59. Fergusson DM, Boden JM, Horwood LJ. Psychosocial sequelae of cannabis use and implications for policy: findings from the Christchurch health and development study. Soc Psychiatry Psychiatr Epidemiol. 2015;50(9):1317–26.

    PubMed  Google Scholar 

  60. Meier MH, Hill ML, Small PJ, Luthar SS. Associations of adolescent cannabis use with academic performance and mental health: a longitudinal study of upper middle class youth. Drug Alcohol Depend. 2015;156:207–12.

    PubMed  PubMed Central  Google Scholar 

  61. Homel J, Thompson K, Leadbeater B. Trajectories of marijuana use in youth ages 15-25: implications for postsecondary education experiences. J Stud Alcohol Drugs. 2014;75(4):674–83.

    PubMed  PubMed Central  Google Scholar 

  62. Rodwell L et al. Adolescent mental health and behavioural predictors of being NEET: a prospective study of young adults not in employment, education, or training. Psychol Med. 2018;48(5):861–71.

    PubMed  Google Scholar 

  63. D'Souza DC, Sewell RA, Ranganathan M. Cannabis and psychosis/schizophrenia: human studies. Eur Arch Psychiatry Clin Neurosci. 2009;259(7):413–31.

    PubMed  PubMed Central  Google Scholar 

  64. Sewell RA, Ranganathan M, D'Souza DC. Cannabinoids and psychosis. Int Rev Psychiatry. 2009;21(2):152–62.

    PubMed  Google Scholar 

  65. Gibbs M, Winsper C, Marwaha S, Gilbert E, Broome M, Singh SP. Cannabis use and mania symptoms: a systematic review and meta-analysis. J Affect Disord. 2015;171:39–47.

    PubMed  Google Scholar 

  66. Marconi A, di Forti M, Lewis CM, Murray RM, Vassos E. Meta-analysis of the association between the level of cannabis use and risk of psychosis. Schizophr Bull. 2016;42(5):1262–9.

    PubMed  PubMed Central  Google Scholar 

  67. Allegri F, Belvederi Murri M, Paparelli A, Marcacci T, Braca M, Menchetti M, et al. Current cannabis use and age of psychosis onset: a gender-mediated relationship? Results from an 8-year FEP incidence study in Bologna. Psychiatry Res. 2013;210(1):368–70.

    PubMed  Google Scholar 

  68. Large M, Sharma S, Compton MT, Slade T, Nielssen O. Cannabis use and earlier onset of psychosis: a systematic meta-analysis. Arch Gen Psychiatry. 2011;68(6):555–61.

    PubMed  Google Scholar 

  69. Myles N, Newall H, Nielssen O, Large M. The association between cannabis use and earlier age at onset of schizophrenia and other psychoses: meta-analysis of possible confounding factors. Curr Pharm Des. 2012;18(32):5055–69.

    CAS  PubMed  Google Scholar 

  70. Di Forti M, et al. Daily use, especially of high-potency cannabis, drives the earlier onset of psychosis in cannabis users. Schizophr Bull. 2014;40(6):1509–17.

    PubMed  Google Scholar 

  71. Walsh Z, Gonzalez R, Crosby K, S. Thiessen M, Carroll C, Bonn-Miller MO. Medical cannabis and mental health: a guided systematic review. Clin Psychol Rev. 2017;51:15–29.

    PubMed  Google Scholar 

  72. O'neil ME, et al. Benefits and harms of plant-based cannabis for posttraumatic stress disorder: a systematic review. Ann Intern Med. 2017;167(5):332–40.

    PubMed  Google Scholar 

  73. Degenhardt L, Ferrari AJ, Calabria B, Hall WD, Norman RE, McGrath J, et al. The global epidemiology and contribution of cannabis use and dependence to the global burden of disease: results from the GBD 2010 study. PLoS One. 2013;8(10):e76635.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Fattore L, Spano MS, Altea S, Angius F, Fadda P, Fratta W. Cannabinoid self-administration in rats: sex differences and the influence of ovarian function. Br J Pharmacol. 2007;152(5):795–804.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Fattore L, Spano MS, Altea S, Fadda P, Fratta W. Drug- and cue-induced reinstatement of cannabinoid-seeking behaviour in male and female rats: influence of ovarian hormones. Br J Pharmacol. 2010;160(3):724–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Tseng AH, Craft RM. CB(1) receptor mediation of cannabinoid behavioral effects in male and female rats. Psychopharmacology. 2004;172(1):25–30.

    CAS  PubMed  Google Scholar 

  77. Tseng AH, Craft RM. Sex differences in antinociceptive and motoric effects of cannabinoids. Eur J Pharmacol. 2001;430(1):41–7.

    CAS  PubMed  Google Scholar 

  78. Craft RM, Kandasamy R, Davis SM. Sex differences in anti-allodynic, anti-hyperalgesic and anti-edema effects of Delta(9)-tetrahydrocannabinol in the rat. Pain. 2013;154(9):1709–17.

    CAS  PubMed  Google Scholar 

  79. Craft RM, Marusich JA, Wiley JL. Sex differences in cannabinoid pharmacology: a reflection of differences in the endocannabinoid system? Life Sci. 2013;92(8–9):476–81.

    CAS  PubMed  Google Scholar 

  80. Harte-Hargrove LC, Dow-Edwards DL. Withdrawal from THC during adolescence: sex differences in locomotor activity and anxiety. Behav Brain Res. 2012;231(1):48–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wiley JL. Sex-dependent effects of delta 9-tetrahydrocannabinol on locomotor activity in mice. Neurosci Lett. 2003;352(2):77–80.

    CAS  PubMed  Google Scholar 

  82. Wakley AA, Wiley JL, Craft RM. Sex differences in antinociceptive tolerance to delta-9-tetrahydrocannabinol in the rat. Drug Alcohol Depend. 2014;143:22–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wakley AA, Wiley JL, Craft RM. Gonadal hormones do not alter the development of antinociceptive tolerance to delta-9-tetrahydrocannabinol in adult rats. Pharmacol Biochem Behav. 2015;133:111–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Cha YM, Jones KH, Kuhn CM, Wilson WA, Swartzwelder HS. Sex differences in the effects of delta9-tetrahydrocannabinol on spatial learning in adolescent and adult rats. Behav Pharmacol. 2007;18(5–6):563–9.

    CAS  PubMed  Google Scholar 

  85. Cocchetto DM, Owens SM, Perez-Reyes M, DiGuiseppi S, Miller LL. Relationship between plasma delta-9-tetrahydrocannabinol concentration and pharmacologic effects in man. Psychopharmacology. 1981;75(2):158–64.

    CAS  PubMed  Google Scholar 

  86. Mathew RJ, Wilson WH, Davis R. Postural syncope after marijuana: a transcranial Doppler study of the hemodynamics. Pharmacol Biochem Behav. 2003;75(2):309–18.

    CAS  PubMed  Google Scholar 

  87. Makela P, Wakeley J, Gijsman H, Robson PJ, Bhagwagar Z, Rogers RD. Low doses of delta-9 tetrahydrocannabinol (THC) have divergent effects on short-term spatial memory in young, Healthy Adults. Neuropsychopharmacology. 2006;31(2):462–70.

    CAS  PubMed  Google Scholar 

  88. Fogel JS, Kelly TH, Westgate PM, Lile JA. Sex differences in the subjective effects of oral delta(9)-THC in cannabis users. Pharmacol Biochem Behav. 2017;152:44–51.

    CAS  PubMed  Google Scholar 

  89. Cooper ZD, Haney M. Comparison of subjective, pharmacokinetic, and physiological effects of marijuana smoked as joints and blunts. Drug Alcohol Depend. 2009;103(3):107–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Haney M. Opioid antagonism of cannabinoid effects: differences between marijuana smokers and nonmarijuana smokers. Neuropsychopharmacology. 2007;32(6):1391–403.

    CAS  PubMed  Google Scholar 

  91. Penetar DM, Kouri EM, Gross MM, McCarthy EM, Rhee CK, Peters EN, et al. Transdermal nicotine alters some of marihuana's effects in male and female volunteers. Drug Alcohol Depend. 2005;79(2):211–23.

    CAS  PubMed  Google Scholar 

  92. Anderson BM, Rizzo M, Block RI, Pearlson GD, O'Leary DS. Sex, drugs, and cognition: effects of marijuana. J Psychoactive Drugs. 2010;42(4):413–24.

    PubMed  PubMed Central  Google Scholar 

  93. Grant JD, Scherrer JF, Neuman RJ, Todorov AA, Price RK, Bucholz KK. A comparison of the latent class structure of cannabis problems among adult men and women who have used cannabis repeatedly. Addiction. 2006;101(8):1133–42.

    PubMed  Google Scholar 

  94. • Herrmann ES, Weerts EM, Vandrey R. Sex differences in cannabis withdrawal symptoms among treatment-seeking cannabis users. Exp Clin Psychopharmacol. 2015;23(6):415–21 This study demonstrates more severe symptoms of cannabis withdrawal in women compared to men.

    PubMed  PubMed Central  Google Scholar 

  95. Cuttler C, Mischley LK, Sexton M. Sex differences in cannabis use and effects: a cross-sectional survey of cannabis users. Cannabis Cannabinoid Res. 2016;1(1):166–75.

    PubMed  PubMed Central  Google Scholar 

  96. Noack R, Hofler M, Lueken U. Cannabis use patterns and their association with DSM-IV cannabis dependence and gender. Eur Addict Res. 2011;17(6):321–8.

    CAS  PubMed  Google Scholar 

  97. Schlienz NJ, Budney AJ, Lee DC, Vandrey R. Cannabis withdrawal: a review of neurobiological mechanisms and sex differences. Curr Addict Rep. 2017;4(2):75–81.

    PubMed  PubMed Central  Google Scholar 

  98. Sherman BJ, McRae-Clark AL, Baker NL, Sonne SC, Killeen TK, Cloud K, et al. Gender differences among treatment-seeking adults with cannabis use disorder: clinical profiles of women and men enrolled in the achieving cannabis cessation-evaluating N-acetylcysteine treatment (ACCENT) study. Am J Addict. 2017;26(2):136–44.

    PubMed  PubMed Central  Google Scholar 

  99. Copersino ML, Boyd SJ, Tashkin DP, Huestis MA, Heishman SJ, Dermand JC, et al. Sociodemographic characteristics of cannabis smokers and the experience of cannabis withdrawal. Am J Drug Alcohol Abuse. 2010;36(6):311–9.

    PubMed  PubMed Central  Google Scholar 

  100. Agrawal A, Lynskey MT, Madden PAF, Pergadia ML, Bucholz KK, Heath AC. Simultaneous cannabis and tobacco use and cannabis-related outcomes in young women. Drug Alcohol Depend. 2009;101(1–2):8–12.

    PubMed  Google Scholar 

  101. • Khan SS, et al. Gender differences in cannabis use disorders: results from the National Epidemiologic Survey of Alcohol and Related Conditions. Drug Alcohol Depend. 2013;130(1-3):101–8 Data from a large national sample demonstrating telescoping phenomenon in women with cannabis use.

    PubMed  Google Scholar 

  102. Ehlers CL, Gizer IR, Vieten C, Gilder DA, Stouffer GM, Lau P, et al. Cannabis dependence in the San Francisco family study: age of onset of use, DSM-IV symptoms, withdrawal, and heritability. Addict Behav. 2010;35(2):102–10.

    PubMed  Google Scholar 

  103. Hernandez-Avila CA, Rounsaville BJ, Kranzler HR. Opioid-, cannabis- and alcohol-dependent women show more rapid progression to substance abuse treatment. Drug Alcohol Depend. 2004;74(3):265–72.

    CAS  PubMed  Google Scholar 

  104. McDonald J, Schleifer L, Richards JB, de Wit H. Effects of THC on behavioral measures of impulsivity in humans. Neuropsychopharmacology. 2003;28(7):1356–65.

    CAS  PubMed  Google Scholar 

  105. Roser P, Gallinat J, Weinberg G, Juckel G, Gorynia I, Stadelmann AM. Psychomotor performance in relation to acute oral administration of delta9-tetrahydrocannabinol and standardized cannabis extract in healthy human subjects. Eur Arch Psychiatry Clin Neurosci. 2009;259(5):284–92.

    PubMed  Google Scholar 

  106. Pope HG Jr, et al. Evidence for a sex-specific residual effect of cannabis on visuospatial memory. Psychother Psychosom. 1997;66(4):179–84.

    PubMed  Google Scholar 

  107. Crane NA, Schuster RM, Gonzalez R. Preliminary evidence for a sex-specific relationship between amount of cannabis use and neurocognitive performance in young adult cannabis users. J Int Neuropsychol Soc. 2013;19(9):1009–15.

    PubMed  PubMed Central  Google Scholar 

  108. Crane NA, Schuster RM, Mermelstein RJ, Gonzalez R. Neuropsychological sex differences associated with age of initiated use among young adult cannabis users. J Clin Exp Neuropsychol. 2015;37(4):389–401.

    PubMed  PubMed Central  Google Scholar 

  109. Skosnik PD, et al. The effect of cannabis use and gender on the visual steady state evoked potential. Clin Neurophysiol. 2006;117(1):144–56.

    PubMed  Google Scholar 

  110. Eranti SV, MacCabe JH, Bundy H, Murray RM. Gender difference in age at onset of schizophrenia: a meta-analysis. Psychol Med. 2013;43(1):155–67.

    CAS  PubMed  Google Scholar 

  111. • Donoghue K, et al. Cannabis use, gender and age of onset of schizophrenia: data from the AESOP study. Psychiatry Res. 2014;215(3):528–32 This study suggests that cannabis use is associated with earlier psychosis onset and the typical age differences between men and women diminishes in cannabis users.

    PubMed  Google Scholar 

  112. Compton MT, et al. Association of pre-onset cannabis, alcohol, and tobacco use with age at onset of prodrome and age at onset of psychosis in first-episode patients. Am J Psychiatry. 2009;166(11):1251–7.

    PubMed  PubMed Central  Google Scholar 

  113. Decoster J, van Os J, Kenis G, Henquet C, Peuskens J, de Hert M, et al. Age at onset of psychotic disorder: cannabis, BDNF Val66Met, and sex-specific models of gene-environment interaction. Am J Med Genet B Neuropsychiatr Genet. 2011;156B(3):363–9.

    PubMed  Google Scholar 

  114. Foster KT, Li N, McClure EA, Sonne SC, Gray KM. Gender differences in internalizing symptoms and suicide risk among men and women seeking treatment for cannabis use disorder from late adolescence to middle adulthood. J Subst Abus Treat. 2016;66:16–22.

    Google Scholar 

  115. Danielsson AK, Lundin A, Allebeck P, Agardh E. Cannabis use and psychological distress: an 8-year prospective population-based study among Swedish men and women. Addict Behav. 2016;59:18–23.

    PubMed  Google Scholar 

  116. Szutorisz H, Egervári G, Sperry J, Carter JM, Hurd YL. Cross-generational THC exposure alters the developmental sensitivity of ventral and dorsal striatal gene expression in male and female offspring. Neurotoxicol Teratol. 2016;58:107–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kosty DB, Farmer RF, Seeley JR, Gau JM, Duncan SC, Lewinsohn PM. Parental transmission of risk for cannabis use disorders to offspring. Addiction. 2015;110(7):1110–7.

    PubMed  PubMed Central  Google Scholar 

  118. Cho BY. Associations of father’s lifetime cannabis use disorder with child’s initiation of cannabis use, alcohol use, and sexual intercourse by child gender. Subst Use Misuse. 2018;53(14):2330–8.

    PubMed  Google Scholar 

  119. Castelli MP et al. Male and female rats differ in brain cannabinoid CB1 receptor density and function and in behavioural traits predisposing to drug addiction: effect of ovarian hormones. Curr Pharm Des, 2013.

  120. Rubino T, Parolaro D. Sexually dimorphic effects of cannabinoid compounds on emotion and cognition. Front Behav Neurosci. 2011;5:64.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Mateos B, Borcel E, Loriga R, Luesu W, Bini V, Llorente R, et al. Adolescent exposure to nicotine and/or the cannabinoid agonist CP 55,940 induces gender-dependent long-lasting memory impairments and changes in brain nicotinic and CB(1) cannabinoid receptors. J Psychopharmacol. 2011;25(12):1676–90.

    CAS  PubMed  Google Scholar 

  122. Burston JJ, Wiley JL, Craig AA, Selley DE, Sim-Selley LJ. Regional enhancement of cannabinoid CB#8321; receptor desensitization in female adolescent rats following repeated Delta-tetrahydrocannabinol exposure. Br J Pharmacol. 2010;161(1):103–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Silva L, Black R, Michaelides M, Hurd YL, Dow-Edwards D. Sex and age specific effects of delta-9-tetrahydrocannabinol during the periadolescent period in the rat: the unique susceptibility of the prepubescent animal. Neurotoxicol Teratol. 2016;58:88–100.

    CAS  PubMed  Google Scholar 

  124. Alteba S, Korem N, Akirav I. Cannabinoids reverse the effects of early stress on neurocognitive performance in adulthood. Learn Mem. 2016;23(7):349–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Zamberletti E, Prini P, Speziali S, Gabaglio M, Solinas M, Parolaro D, et al. Gender-dependent behavioral and biochemical effects of adolescent delta-9-tetrahydrocannabinol in adult maternally deprived rats. Neuroscience. 2012;204:245–57.

    CAS  PubMed  Google Scholar 

  126. • Van Laere K, et al. Gender-dependent increases with healthy aging of the human cerebral cannabinoid-type 1 receptor binding using [(18)F]MK-9470 PET. NeuroImage. 2008;39(4):1533–41 A PET study demonstrating gender related differences in cannabinoid receptor availability in humans.

    PubMed  Google Scholar 

  127. • Normandin MD, et al. Imaging the cannabinoid CB1 receptor in humans with [11C]OMAR: assessment of kinetic analysis methods, test-retest reproducibility, and gender differences. J Cereb Blood Flow Metab. 2015;35(8):1313–22 A PET study demonstrating gender-related differences in cannabinoid receptor availability in humans.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Narimatsu S, Watanabe K, Yamamoto I, Yoshimura H. Sex difference in the oxidative metabolism of delta 9-tetrahydrocannabinol in the rat. Biochem Pharmacol. 1991;41(8):1187–94.

    CAS  PubMed  Google Scholar 

  129. • Tseng AH, Harding JW, Craft RM. Pharmacokinetic factors in sex differences in delta 9-tetrahydrocannabinol-induced behavioral effects in rats. Behav Brain Res. 2004;154(1):77–83 This study identifies sex differences in the pharmacokinetics of cannabinoids using preclinical data.

    CAS  PubMed  Google Scholar 

  130. Wiley JL, Burston JJ. Sex differences in Delta(9)-tetrahydrocannabinol metabolism and in vivo pharmacology following acute and repeated dosing in adolescent rats. Neurosci Lett. 2014;576:51–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Castelli MP, et al. Male and female rats differ in brain cannabinoid CB1 receptor density and function and in behavioural traits predisposing to drug addiction: effect of ovarian hormones. Curr Pharm Des. 2014;20(13):2100–13.

    CAS  PubMed  Google Scholar 

  132. Marusich JA, Craft RM, Lefever TW, Wiley JL. The impact of gonadal hormones on cannabinoid dependence. Exp Clin Psychopharmacol. 2015;23(4):206–16.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohini Ranganathan.

Ethics declarations

Conflict of Interest

Dr. Ranganathan reports grants from Insys Therapeutics, outside the submitted work. Dr. Bassir Nia, Dr. Mann, and Dr. Kaur do not have anything to disclose.

Human and Animal Rights

All cited studies/experiments with human or animal subjects have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Addictions

Electronic supplementary material

ESM 1

(DOCX 37.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bassir Nia, A., Mann, C., Kaur, H. et al. Cannabis Use: Neurobiological, Behavioral, and Sex/Gender Considerations. Curr Behav Neurosci Rep 5, 271–280 (2018). https://doi.org/10.1007/s40473-018-0167-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40473-018-0167-4

Keywords

Navigation