Skip to main content

Advertisement

Log in

Inter-relationship of the Intestinal Microbiome, Diet, and Mental Health

  • Brain and Microbiome (R Heijtz, Section Editor)
  • Published:
Current Behavioral Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

An unbalanced microbiota (dysbiosis) has been associated with or causative for a large array of human pathologies, including cognitive/emotional-related disorders. This review focuses on recent findings that address the restoration of a dysbiotic microbiota by dietary interventions with the main purpose of influencing brain function.

Recent Findings

Recent research strongly suggests a critical connection between dietary habits, cognitive performance, and microbiota, but a thorough study of this inter-relationship presents a significant challenge. Although gut microbiota composition may be altered by environmental variables, it is fairly stable during adulthood and old age, and the analysis of gut microbial composition is not enough to fully understand the impact of a nutritional intervention in the gut microbiota and its consequences on the brain. Novel findings suggest the need for including the analysis of the metabolome and specific biomarkers of the microbial metabolism for the understanding of the effect of nutritional interventions on brain function.

Summary

This review explores evidences pointing towards diet having a pivotal impact on the host’s development and progression of mental disorders through the regulation of microbiota composition and functionality. It is also discussed the role of key microbial metabolites as essential biomarkers to a better understanding of the complexity of the inter-relationship between microbiota, diet, and mental health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90:859–904.

    Article  CAS  PubMed  Google Scholar 

  2. Nuriel-Ohayon M, Neuman H, Koren O. Microbial changes during pregnancy, birth, and infancy. Front Microbiol. 2016;7:1–13.

    Article  Google Scholar 

  3. Heijtz RD. Fetal, neonatal, and infant microbiome: perturbations and subsequent effects on brain development and behavior. Semin Fetal Neonatal Med. 2016;21:410–7.

    Article  Google Scholar 

  4. Zhernakova A, Kurilshikov A, Jan Bonder M, Tigchelaar EF, Schirmer M, Vatanen T, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science. 2017;352:565–9.

    Article  CAS  Google Scholar 

  5. Falony G, Joossens M, Vieira-silva S, Wang J, Darzi Y, Faust K, et al. Population-level analysis of gut microbiome variation. Science. 2016;352:560–4.

    Article  CAS  PubMed  Google Scholar 

  6. Kundu P, Blacher E, Elinav E, Pettersson S. Our gut microbiome: the evolving inner self. Cell. 2017;171:1481–93.

    Article  CAS  PubMed  Google Scholar 

  7. Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci. 2011;108:4586–91.

    Article  CAS  PubMed  Google Scholar 

  8. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–84.

    Article  CAS  PubMed  Google Scholar 

  9. Kumar M, Babaei P, Ji B, Nielsen J. Human gut microbiota and healthy aging: recent developments and future prospective. Nutr Healthy Aging. 2016;4:3–16.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Saraswati S, Sitaraman R. Aging and the human gut microbiota-from correlation to causality. Front Microbiol. 2015;5:1–4.

    Article  Google Scholar 

  11. Santoro A, Ostan R, Candela M, Biagi E, Brigidi P, Capri M, et al. Gut microbiota changes in the extreme decades of human life: a focus on centenarians. Cell Mol Life Sci. 2018;75:129–48.

    Article  CAS  PubMed  Google Scholar 

  12. Proctor C, Thiennimitr P, Chattipakorn N. Diet, gut microbiota and cognition. Metab Brain Dis. 2017;32:1–17.

    Article  CAS  PubMed  Google Scholar 

  13. Vuong HE, Hsiao EY. Emerging roles for the gut microbiome in autism spectrum disorder. Biol Psychiatry. 2017;81:411–23.

    Article  PubMed  Google Scholar 

  14. Hu X, Wang T, Jin F. Alzheimer’s disease and gut microbiota. Sci China Life Sci. 2016;59:1006–23.

    Article  CAS  PubMed  Google Scholar 

  15. Parashar A, Udayabanu M. Parkinsonism and related disorders gut microbiota: implications in Parkinson’s disease. Park. Relat. Disord. 2017:1–7.

  16. Lima-ojeda JM, Rupprecht R, Baghai TC. “ I am I and my bacterial circumstances”: linking gut and depression. Front Psychiatry. 2017;8:1–13.

    Article  Google Scholar 

  17. Carabotti M, Scirocco A, Antonietta M, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28:203–9.

    PubMed  PubMed Central  Google Scholar 

  18. Foster JA, Rinaman L, Cryan JF. Neurobiology of stress stress & the gut-brain axis: regulation by the microbiome. Neurobiol Stress. 2017:1–13.

  19. Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG, et al. Minireview: gut microbiota: the neglected. Mol Endocrinol. 2014;28:1221–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Desbonnet L, Clarke G, Traplin A, O’Sullivan O, Crispie F, Moloney RD, et al. Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav Immun. 2015;48:165–73.

    Article  CAS  PubMed  Google Scholar 

  21. Fasano A, Visanji NP, Liu LWC, Lang AE, Pfeiffer RF. Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol. 2015;14:625–39.

    Article  CAS  PubMed  Google Scholar 

  22. McElhanon BO, McCracken C, Karpen S, Sharp WG. Gastrointestinal symptoms in autism spectrum disorder: a meta-analysis. Pediatrics. 2014;133:872–83.

    Article  PubMed  Google Scholar 

  23. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu X-N, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004;558:263–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155:1451–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bruce-Keller AJ, Salbaum JM, Berthoud HR. Harnessing gut microbes for mental health: getting from here to there. Biol Psychiatry. 2017:1–10.

  26. Arentsen T, Qian Y, Gkotzis S, Femenia T, Wang T, Udekwu K, et al. The bacterial peptidoglycan-sensing molecule Pglyrp2 modulates brain development and behavior. Mol Psychiatry. 2017;22:257–66.

    Article  CAS  PubMed  Google Scholar 

  27. Arentsen T, Khalid R, Qian Y, Diaz HR. Sex-dependent alterations in motor and anxiety-like behavior of aged bacterial peptidoglycan sensing molecule 2 knockout mice. Brain Behav Immun. 2018;67:345–54.

    Article  CAS  PubMed  Google Scholar 

  28. Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, et al. The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One. 2010;5:e9505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kumar DK, Choi SH, Washicosky KJ, Eimer WA, Tucker S, Ghofrani J, et al. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci. Transl. Med. 2016;8:340ra72.

    Article  PubMed  CAS  Google Scholar 

  30. Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PWJ. Psychobiotics and the manipulation of bacteria–gut–brain signals. Trends Neurosci. 2016;39:763–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Valls-Pedret C, Sala-Vila A, Serra-Mir M, Corella D, de la Torre R, Ángel Martínez-González M, et al. Mediterranean diet and age-related cognitive decline a randomized clinical trial. JAMA Intern Med. 2015;175:1094–103.

    Article  PubMed  Google Scholar 

  32. Otaegui-Arrazola A, Amiano P, Elbusto A, Urdaneta E, Martínez-Lage P. Diet, cognition, and Alzheimer’s disease: food for thought. Eur J Nutr. 2014;53:1–23.

    Article  CAS  PubMed  Google Scholar 

  33. Tussing-humphreys L, Lamar M, Blumenthal JA, Babyak M, Fantuzzi G, Blumstein L, et al. Building research in diet and cognition: the BRIDGE randomized controlled trial. Contemp Clin Trials. 2017;59:87–97.

    Article  PubMed  Google Scholar 

  34. Backhed F. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915–20.

    Article  PubMed  CAS  Google Scholar 

  35. Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011;5:220–30.

    Article  CAS  PubMed  Google Scholar 

  36. Arumugam M, Raes J, Pelletier E, Le Paslier D, Batto J, Bertalan M, et al. Enterotypes of the human gut microbiome. Nature. 2013;473:174–80.

    Article  CAS  Google Scholar 

  37. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y, Sue AK, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2012;334:105–8.

    Article  CAS  Google Scholar 

  38. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.

    Article  CAS  PubMed  Google Scholar 

  39. Roager HM, Licht TR, Poulsen SK, Larsen TM, Bahl MI. Microbial enterotypes, inferred by the Prevotella-to-Bacteroides ratio, remained stable during a 6-month randomized controlled diet intervention with the new Nordic diet. Appl Environ Microbiol. 2014;80:1142–9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jeffery IB, Claesson MJ, O’Toole PW, Shanahan F. Categorization of the gut microbiota: enterotypes or gradients? Nat Rev Microbiol. 2012;10:591–2.

    Article  CAS  PubMed  Google Scholar 

  41. Cattaneo A, Cattane N, Galluzzi S, Provasi S, Lopizzo N, Festari C, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging. 2017;49:60–8.

    Article  CAS  PubMed  Google Scholar 

  42. Unger MM, Spiegel J, Dillmann K-U, Grundmann D, Philippeit H, Bürmann J, et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord. 2016;32:66–72.

    Article  PubMed  Google Scholar 

  43. Wu GD, Compher C, Chen EZ, Smith SA, Shah RD, Bittinger K, et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut. 2016;65:63–72.

    Article  CAS  PubMed  Google Scholar 

  44. Ou J, Carbonero F, Zoetendal EG, DeLany JP, Wang M, Newton K, et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am J Clin Nutr. 2013;98:111–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci. 2010;107:14691–6.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Martínez I, Stegen JC, Maldonado-Gómez MX, Eren AM, Siba PM, Greenhill AR, et al. The gut microbiota of rural Papua new Guineans: composition, diversity patterns, and ecological processes. Cell Rep. 2015;11:527–38.

    Article  PubMed  CAS  Google Scholar 

  47. Francis H, Stevenson R. The longer-term impacts of Western diet on human cognition and the brain. Appetite. 2013;63:119–28.

    Article  PubMed  Google Scholar 

  48. Taylor MK, Sullivan DK, Swerdlow RH, Vidoni ED, Morris JK, Mahnken JD, et al. A high-glycemic diet is associated with cerebral amyloid burden in cognitively normal older adults. Am J Clin Nutr. 2017;106:1463–70.

    Article  PubMed  Google Scholar 

  49. Bruce-Keller AJ, Fernandez-Kim SO, Townsend RL, Kruger C, Carmouche R, Newman S, et al. Maternal obese-type gut microbiota differentially impact cognition, anxiety and compulsive behavior in male and female offspring in mice. PLoS One. 2017;12:1–20.

    Article  CAS  Google Scholar 

  50. Val-Laillet D, Besson M, Guérin S, Coquery N, Randuineau G, Kanzari A, et al. A maternal Western diet during gestation and lactation modifies offspring’s microbiota activity, blood lipid levels, cognitive responses, and hippocampal neurogenesis in Yucatan pigs. FASEB J. 2017;31:2037–49.

    Article  CAS  PubMed  Google Scholar 

  51. Baym CL, Khan NA, Monti JM, Raine LB, Drollette ES, Moore RD, et al. Dietary lipids are differentially associated with hippocampal-dependent relational memory in prepubescent children. Am J Clin Nutr. 2014;99:1026–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Khan NA, Raine LB, Drollette ES, Scudder MR, Kramer AF, Hillman CH. Dietary fiber is positively associated with cognitive control among prepubertal children. J Nutr. 2015;145:143–9.

    Article  CAS  PubMed  Google Scholar 

  53. Bruce-Keller AJ, Keller JN, Morrison CD. Obesity and vulnerability of the CNS. Biochim Biophys Acta. 1792;2009:395–400.

    Google Scholar 

  54. Ronan L, Alexander-Bloch AF, Wagstyl K, Farooqi S, Brayne C, Tyler LK, et al. Obesity associated with increased brain age from midlife. Neurobiol Aging. 2016;47:63–70.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Prickett C, Brennan L, Stolwyk R. Examining the relationship between obesity and cognitive function: a systematic literature review. Obes Res Clin Pract. 2015;9:93–113.

    Article  PubMed  Google Scholar 

  56. Bruce-Keller AJ, Salbaum JM, Luo M, Blanchard E, Taylor CM, Welsh DA, et al. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol Psychiatry. 2015;77:607–15.

    Article  PubMed  Google Scholar 

  57. Tong TYN, Wareham NJ, Khaw K, Imamura F, Forouhi NG. Prospective association of the Mediterranean diet with cardiovascular disease incidence and mortality and its population impact in a non-Mediterranean population: the EPIC-Norfolk study. BMC Med. 2016;14:1–11.

    Article  Google Scholar 

  58. Gotsis E, Anagnostis P. Health benefits of the Mediterranean diet: an update of research over the last 5 years. Angiology. 2015;66:304–18.

    Article  PubMed  Google Scholar 

  59. Huhn S, Masouleh SK, Stumvoll M, Villringer A. Components of a Mediterranean diet and their impact on cognitive functions in aging. Front Aging Neurosci. 2015;7:1–10.

    Article  CAS  Google Scholar 

  60. Frisardi V, Panza F, Seripa D, Imbimbo BP, Vendemiale G, Pilotto A, et al. Nutraceutical properties of mediterranean diet and cognitive decline: possible underlying mechanisms. J Alzheimers Dis. 2010;22:715–40.

    Article  CAS  PubMed  Google Scholar 

  61. Wang X, Wang W, Li L, George P, Hyoung-gon L, Xiongwei Z. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochem Biophys Acta. 1842;2015:1240–7.

    Google Scholar 

  62. Covas M-I, de la Torre R, Fito M. Virgin olive oil: a key food for cardiovascular risk protection. Br. J. Nutr. 2015;113(Suppl):S19–28.

    Article  CAS  PubMed  Google Scholar 

  63. Zamora-Ros R, Serafini M, Estruch R, Lamuela-Raventós RM, Martínez-González MA, Salas-Salvadó J, et al. Mediterranean diet and non enzymatic antioxidant capacity in the PREDIMED study: evidence for a mechanism of antioxidant tuning. Nutr Metab Cardiovasc Dis. 2013;23:1167–74.

    Article  CAS  PubMed  Google Scholar 

  64. Tomasello G, Mazzola M, Leone A, Sinagra E, Zummo G, Farina F, et al. Nutrition, oxidative stress and intestinal dysbiosis: influence of diet on gut microbiota in inflammatory bowel diseases. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2016;160:461–6.

    PubMed  Google Scholar 

  65. Mosele JI, Martín-Peláez S, Macià A, Farràs M, Valls RM, Catalán Ú, et al. Faecal microbial metabolism of olive oil phenolic compounds: in vitro and in vivo approaches. Mol Nutr Food Res. 2014;58:1809–19.

    Article  CAS  PubMed  Google Scholar 

  66. Moreno-Indias I, Sánchez-Alcoholado L, Pérez-Martínez P, Andrés-Lacueva C, Cardona F, Tinahones F, et al. Red wine polyphenols modulate fecal microbiota and reduce markers of the metabolic syndrome in obese patients. Food Funct. 2016;7:1775–87.

    Article  PubMed  CAS  Google Scholar 

  67. Cueva C, Gil-Sánchez I, Ayuda-Durán B, González-Manzano S, González-Paramás AM, Santos-Buelga C, et al. An integrated view of the effects of wine polyphenols and their relevant metabolites on gut and host health. Molecules. 2017;22:1–15.

    Article  CAS  Google Scholar 

  68. Barroso E, Muñoz-González I, Jiménez E, Bartolomé B, Moreno-Arribas MV, Peláez C, et al. Phylogenetic profile of gut microbiota in healthy adults after moderate intake of red wine. Mol Nutr Food Res. 2016;0:1–9.

    Google Scholar 

  69. Dueñas M, Cueva C, Muñoz-González I, Jiménez-Girón A, Sánchez-Patán F, Santos-Buelga C, et al. Studies on modulation of gut microbiota by wine polyphenols: from isolated cultures to Omic approaches. Antioxidants. 2015;4:1–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Queipo-Ortuño MI. Influence of red wine polyphenols on the gut microbiota ecology. Am J Clin Nutr. 2012;95:1323–34.

    Article  PubMed  CAS  Google Scholar 

  71. Gutiérrez-Díaz I, Fernández-Navarro T, Sánchez B, Margolles A, González S. Mediterranean diet and faecal microbiota: a transversal study. Food Funct. 2016;7:2347–56.

    Article  PubMed  CAS  Google Scholar 

  72. Martín-Peláez S, Castañer O, Solà R, Motilva MJ, Castell M, Pérez-Cano FJ, et al. Influence of phenol-enriched olive oils on human intestinal immune function. Nutrients. 2016;8:1–14.

    Article  CAS  Google Scholar 

  73. Graf D, Di Cagno R, Fåk F, Flint HJ, Nyman M, Saarela M, et al. Contribution of diet to the composition of the human gut microbiota. Microb Ecol Health Dis. 2015;26:26164.

    PubMed  Google Scholar 

  74. De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65:1812–21.

    Article  PubMed  CAS  Google Scholar 

  75. Mitsou EK, Kakali A, Antonopoulou S, Mountzouris KC, Yannakoulia M, Panagiotakos DB, et al. Adherence to the Mediterranean diet is associated with the gut microbiota pattern and gastrointestinal characteristics in an adult population. Br J Nutr. 2017;117:1645–55.

    Article  CAS  PubMed  Google Scholar 

  76. Shakersain B, Santoni G, Larsson SC, Faxén-Irving G, Fastbom J, Fratiglioni L, et al. Prudent diet may attenuate the adverse effects of Western diet on cognitive decline. Alzheimers Dement. 2016;12:100–9.

    Article  PubMed  Google Scholar 

  77. Morris MC, Tangney CC, Wang Y, Sacks FM, Bennett DA, Aggarwal NT. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement. 2015;11:1007–14.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci. 2017;20:145–55.

    Article  CAS  PubMed  Google Scholar 

  79. Masi A, Quintana DS, Glozier N, Lloyd AR, Hickie IB, Guastella AJ. Cytokine aberrations in autism spectrum disorder: a systematic review and meta-analysis. Mol Psychiatry. 2015;20:440–6.

    Article  CAS  PubMed  Google Scholar 

  80. Rubio-Perez JM, Morillas-Ruiz JM. A review: inflammatory process in Alzheimer’s disease. Role Cytokines Sci World J. 2012:1–15.

  81. Prather AA, Vogelzangs N, Penninx BWJH. Sleep duration, insomnia, and markers of systemic inflammation: results from the Netherlands Study of Depression and Anxiety (NESDA). J Psychiatr Res. 2015;60:95–102.

    Article  PubMed  Google Scholar 

  82. Lichtwark IT, Newnham ED, Robinson SR, Shepherd SJ, Hosking P, Gibson PR, et al. Cognitive impairment in coeliac disease improves on a gluten-free diet and correlates with histological and serological indices of disease severity. Aliment Pharmacol Ther. 2014;40:160–70.

    Article  CAS  PubMed  Google Scholar 

  83. Caminero A, Nistal E, Herrán AR, Pérez-Andrés J, Ferrero MA, Vaquero Ayala L, et al. Differences in gluten metabolism among healthy volunteers, coeliac disease patients and first-degree relatives. Br J Nutr. 2015;114:1157–67.

    Article  CAS  PubMed  Google Scholar 

  84. Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev. 1990;70:567–90.

    Article  CAS  PubMed  Google Scholar 

  85. MacFabe DF. Enteric short-chain fatty acids: microbial messengers of metabolism, mitochondria, and mind: implications in autism spectrum disorders. Microb Ecol Heal Dis. 2015;26:1–14.

    CAS  Google Scholar 

  86. Bourassa MW, Alim I, Bultman SJ, Ratan RR. Butyrate, neuroepigenetics and the gut microbiome: can a high fiber diet improve brain health? Neurosci Lett. 2016;625:56–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Soret R, Chevalier J, De Coppet P, Poupeau G, Derkinderen P, Segain JP, et al. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology. 2010;138:1772–82.

    Article  CAS  PubMed  Google Scholar 

  88. Borghi E, Borgo F, Severgnini M, Savini MN, Casiraghi MC, Vignoli A. Rett syndrome: a focus on gut microbiota. Int J Mol Sci. 2017;18:344–61.

    Article  PubMed Central  Google Scholar 

  89. Strati F, Cavalieri D, Albanese D, De Felice C, Donati C, Hayek J, et al. Altered gut microbiota in Rett syndrome. Microbiome. 2016;4:41–56.

    Article  PubMed  PubMed Central  Google Scholar 

  90. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54:2325–40.

    Article  CAS  Google Scholar 

  91. Wolever TMS, Josse RG, Leiter LA, Chiasson JL. Time of day and glucose tolerance status affect serum short-chain fatty acid concentrations in humans. Metabolism. 1997;46:805–11.

    Article  CAS  PubMed  Google Scholar 

  92. Cho CE, Caudill MA. Trimethylamine-N-oxide: friend, foe, or simply caught in the cross-fire? Trends Endocrinol Metab. 2017;28:121–30.

    Article  CAS  PubMed  Google Scholar 

  93. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. Nat. Med. 2013;19:576–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cho CE, Taesuwan S, Malysheva OV, Bender E, Tulchinsky NF, Yan J, et al. Trimethylamine N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: a randomized controlled trial. Mol Nutr Food Res. 2017;61

  95. Tang WW, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368:1575–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res. 2015;116:448–55.

    Article  CAS  PubMed  Google Scholar 

  97. Dambrova M, Latkovskis G, Kuka J, Strele I, Konrade I, Grinberga S, et al. Diabetes is associated with higher trimethylamine N-oxide plasma levels. Exp Clin Endocrinol Diabetes. 2016;124:251–6.

    Article  CAS  PubMed  Google Scholar 

  98. Xu R, Wang Q, Li L. A genome-wide systems analysis reveals strong link between colorectal cancer and trimethylamine N-oxide (TMAO), a gut microbial metabolite of dietary meat and fat. BMC Genomics. 2015;16(Suppl 7):S4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Xu R, Wang Q. Towards understanding brain-gut-microbiome connections in Alzheimer’s disease. BMC Syst Biol. 2016;10:63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Grant WB. Trends in diet and Alzheimer’s disease during the nutrition transition in Japan and developing countries. J Alzheimers Dis. 2014;38:611–20.

    CAS  PubMed  Google Scholar 

  101. Del Rio D, Zimetti F, Caffarra P, Tassotti M, Bernini F, Brighenti F, et al. The gut microbial metabolite trimethylamine-N-oxide is present in human cerebrospinal fluid. Nutrients. 2017;9:1053.

    Article  PubMed Central  Google Scholar 

  102. O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. 2015;277:32–48.

    Article  PubMed  CAS  Google Scholar 

  103. Maddison DC, Giorgini F. The kynurenine pathway and neurodegenerative disease. Semin Cell Dev Biol. 2015;40:134–41.

    Article  CAS  PubMed  Google Scholar 

  104. Schwarcz R, Stone TW. The kynurenine pathway and the brain: challenges, controversies and promises. Neuropharmacology. 2017;112:237–47.

    Article  CAS  PubMed  Google Scholar 

  105. Kennedy PJ, Cryan JF, Dinan TG, Clarke G. Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology. 2017;112:399–412.

    Article  CAS  PubMed  Google Scholar 

  106. Yu E, Ruiz-Canela M, Guasch-Ferré M, Zheng Y, Toledo E, Clish CB, et al. Increases in plasma tryptophan are inversely associated with incident cardiovascular disease in the Prevención con Dieta Mediterránea (PREDIMED) study. J Nutr. 2017;147:314–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Gérard P. Metabolism of cholesterol and bile acids by the gut microbiota. PathoGenetics. 2013;3:14–24.

    Google Scholar 

  108. Ackerman HD, Gerhard GS. Bile acids in neurodegenerative disorders. Front Aging Neurosci. 2016;8:263.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Olazarán J, Gil-De-Gómez L, Rodríguez-Martín A, Valentí-Soler M, Frades-Payo B, Marín-Muñoz J, et al. A blood-based, 7-metabolite signature for the early diagnosis of Alzheimer’s disease. J Alzheimers Dis. 2015;45:1157–73.

    PubMed  Google Scholar 

  110. Huppert T, Schmidt B, Beluk N, Sparto P. In older adults. Park Relat Disord. 2010;16:S25.

    Article  Google Scholar 

  111. Pan X, Elliott CT, McGuinness B, Passmore P, Kehoe PG, Hölscher C, et al. Metabolomic profiling of bile acids in clinical and experimental samples of Alzheimer’s disease. Meta. 2017;7:1–12.

    Google Scholar 

  112. Lo AC, Callaerts-Vegh Z, Nunes AF, Rodrigues CMP, D’Hooge R. Tauroursodeoxycholic acid (TUDCA) supplementation prevents cognitive impairment and amyloid deposition in APP/PS1 mice. Neurobiol Dis. 2013;50:21–9.

    Article  CAS  PubMed  Google Scholar 

  113. Wilson A, McLean C, Kim RB. Trimethylamine-N-oxide. Curr Opin Lipidol. 2016;27:148–54.

    Article  CAS  PubMed  Google Scholar 

  114. Yarchoan M, Xie SX, Kling MA, Toledo JB, Wolk DA, Lee EB, et al. Cerebrovascular atherosclerosis correlates with Alzheimer pathology in neurodegenerative dementias. Brain. 2012;135:3749–56.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Yiannakopoulou EC. Targeting oxidative stress response by green tea polyphenols: clinical implications. Free Radic Res. 2013;47:667–71.

    Article  CAS  PubMed  Google Scholar 

  116. Marín L, Miguélez EM, Villar CJ, Lombó F. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int. 2015;2015

  117. Cardona F, Andrés-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuño MI. Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem. 2013;24:1415–22.

    Article  CAS  PubMed  Google Scholar 

  118. Vetrani C, Rivellese AA, Annuzzi G, Adiels M, Borén J, Mattila I, et al. Metabolic transformations of dietary polyphenols: comparison between in vitro colonic and hepatic models and in vivo urinary metabolites. J Nutr Biochem. 2016;33:111–8.

    Article  CAS  PubMed  Google Scholar 

  119. Vetrani C, Rivellese AA, Annuzzi G, Mattila I, Meudec E, Hyötyläinen T, et al. Phenolic metabolites as compliance biomarker for polyphenol intake in a randomized controlled human intervention. Food Res Int. 2014;63:233–8.

    Article  CAS  Google Scholar 

  120. Muñoz-González I, Jiménez-Girón A, Martín-Álvarez PJ, Bartolomé B, Moreno-Arribas MV. Profiling of microbial-derived phenolic metabolites in human feces after moderate red wine intake. J Agric Food Chem. 2013;61:9470–9.

    Article  PubMed  CAS  Google Scholar 

  121. Brown NM, Galandi SL, Summer SS, Zhao X, Heubi JE, King EC, et al. S-(−)equol production is developmentally regulated and related to early diet composition. Nutr Res. 2014;34:401–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Etxeberria U, Fernández-Quintela A, Milagro FI, Aguirre L, Martínez JA, Portillo MP. Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition. J Agric Food Chem. 2013;61:9517–33.

    Article  CAS  PubMed  Google Scholar 

  123. Cheng P-F, Chen J-J, Zhou X-Y, Ren Y-F, Huang W, Zhou J-J, et al. Do soy isoflavones improve cognitive function in postmenopausal women? A meta-analysis. Menopause. 2015;

  124. Gleason CE, Fischer BL, Dowling NM, Setchell KDR, Atwood CS, Carlsson CM, et al. Cognitive effects of soy isoflavones in patients with Alzheimer’s disease. J Alzheimers Dis. 2015;22:198–206.

    Google Scholar 

  125. Wilkins HM, Mahnken JD, Welch P, Bothwell R, Koppel S, Jackson RL, et al. A mitochondrial biomarker-based study of S-Equol in Alzheimer’s disease subjects: results of a single-arm. Pilot Trial J Alzheimers Dis. 2017;59:291–300.

    CAS  PubMed  Google Scholar 

  126. Etxeberria U, Arias N, Boqué N, Romo-Hualde A, Macarulla MT, Portillo MP, et al. Metabolic faecal fingerprinting of trans-resveratrol and quercetin following a high-fat sucrose dietary model using liquid chromatography coupled to high-resolution mass spectrometry. Food Funct. 2015;6:2758–67.

    Article  CAS  PubMed  Google Scholar 

  127. Schantz M, Erk T, Richling E. Metabolism of green tea catechins by the human small intestine. Biotechnol J. 2010;5:1050–9.

    Article  CAS  PubMed  Google Scholar 

  128. Pasinetti GM, Wang J, Ho L, Zhao W, Dubner L. Roles of resveratrol and other grape-derived polyphenols in Alzheimer’s disease prevention and treatment. Biochim. Biophys. Acta. 2015;1852:1202–8.

    Article  CAS  PubMed  Google Scholar 

  129. Bode LM, Bunzel D, Huch M, Cho G-S, Ruhland D, Bunzel M, et al. In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota. Am J Clin Nutr. 2013;97:295–309.

    Article  CAS  PubMed  Google Scholar 

  130. Chen ML, Yi L, Zhang Y, Zhou X, Ran L, Yang J, et al. Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. MBio. 2016;7:e02210–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. De la Torre R, De Sola S, Pons M, Duchon A, de Lagran MM, Farré M, et al. Epigallocatechin-3-gallate, a DYRK1A inhibitor, rescues cognitive deficits in down syndrome mouse models and in humans. Mol Nutr Food Res. 2014;58:278–88.

    Article  CAS  PubMed  Google Scholar 

  132. Xu PX, Wang SW, Yu XL, Su YJ, Wang T, Zhou WW, et al. Rutin improves spatial memory in Alzheimer’s disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammation. Behav Brain Res. 2014;264:173–80.

    Article  CAS  PubMed  Google Scholar 

  133. Sabogal-Guáqueta AM, Muñoz-Manco JI, Ramírez-Pineda JR, Lamprea-Rodriguez M, Osorio E, Cardona-Gómez GP. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology. 2015;93:134–45.

    Article  PubMed  CAS  Google Scholar 

  134. Subash S, Braidy N, Essa MM, Zayana A-B, Ragini V, Al-Adawi S, et al. Long-term (15 mo) dietary supplementation with pomegranates from Oman attenuates cognitive and behavioral deficits in a transgenic mice model of Alzheimer’s disease. Nutrition. 2015;31:223–9.

    Article  CAS  PubMed  Google Scholar 

  135. Burton-Freeman BM, Sandhu AK, Edirisinghe I. Red raspberries and their bioactive polyphenols: cardiometabolic and neuronal health links. Adv Nutr. 2016;7:44–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Instituto de Salud Carlos III FEDER, (PI17/00223).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael de la Torre.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Brain and Microbiome

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pizarro, N., de la Torre, R. Inter-relationship of the Intestinal Microbiome, Diet, and Mental Health. Curr Behav Neurosci Rep 5, 1–12 (2018). https://doi.org/10.1007/s40473-018-0147-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40473-018-0147-8

Keywords

Navigation