Skip to main content

Advertisement

Log in

Pathways to Neuroprediction: Opportunities and Challenges to Prediction of Treatment Response in Depression

  • Mood and Anxiety Disorders (C Harmer, Section Editor)
  • Published:
Current Behavioral Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We set out to review the current state of science in neuroprediction, using biological measures of brain function, with task based fMRI to prospectively predict response to a variety of treatments.

Recent Findings

Task-based fMRI neuroprediction studies are balanced between whole brain and ROI specific analyses. The predominant tasks are emotion processing, with ROIs based upon amygdala and subgenual anterior cingulate gyrus, both within the salience and emotion network. A rapidly emerging new area of neuroprediction is of disease course and illness recurrence. Concerns include use of open-label and single arm studies, lack of consideration of placebo effects, unbalanced adjustments for multiple comparisons (over focus on type I error), small sample sizes, unreported effect sizes, overreliance on ROI studies.

Summary

There is a need to adjust neuroprediction study reporting so that greater coherence can facilitate meta analyses, and increased funding for more multiarm studies in neuroprediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of Particular Interest, Published Recently, Have Been Highlighted as: •• of Major Importance

  1. Blazer DG, Kessler RC, McGonagle KA, Swartz MS. The prevalence and distribution of major depression in a national community sample: the National Comorbidity Survey. Am J Psychiatr. 1994;151(7):979–86. https://doi.org/10.1176/ajp.151.7.979.

    Article  CAS  PubMed  Google Scholar 

  2. Klerman GL, Weissman MM. The course, morbidity, and costs of depression. Arch Gen Psychiatry. 1992;49(10):831–4. https://doi.org/10.1001/archpsyc.1992.01820100075013.

    Article  CAS  PubMed  Google Scholar 

  3. Cassano GB, Akiskal HS, Savino M, Soriani A, Musetti L, Perugi G. Single episode of major depressive disorder. First episode of recurrent mood disorder or distinct subtype of late-onset depression? Eur Arch Psychiatry Clin Neurosci. 1993;242(6):373–80. https://doi.org/10.1007/BF02190251.

    Article  CAS  PubMed  Google Scholar 

  4. Greden JF. Diagnosing and treating depression earlier and preventing recurrences: still neglected after all these years 5. Curr Psychiatry Rep. 2004;6(6):401–2. https://doi.org/10.1007/s11920-004-0001-4.

    Article  PubMed  Google Scholar 

  5. Carrol B, Curtis G, Mendels J. Cerebrospinal fluid and plasma free cortisol concentrations in depression. Psychol Med. 1976;6(02):235–44. https://doi.org/10.1017/S0033291700013775.

    Article  Google Scholar 

  6. Halbreich U, Asnis GM, Shindledecker R, Zumoff B, Nathan RS. Cortisol secretion in endogenous depression. I. Basal plasma levels. Arch Gen Psychiatry. 1985;42(9):904–8. https://doi.org/10.1001/archpsyc.1985.01790320076010.

    Article  CAS  PubMed  Google Scholar 

  7. Akil H, Haskett RF, Young EA, Grunhaus L, Kotun J, Weinberg V, et al. Multiple HPA profiles in endogenous depression: effect of age and sex on cortisol and beta-endorphin. Biol Psychiatry. 1993;33(2):73–85. https://doi.org/10.1016/0006-3223(93)90305-W.

    Article  CAS  PubMed  Google Scholar 

  8. Axelson DA, Doraiswamy PM, McDonald WM, Boyko OB, Tupler LA, Patterson LJ. Hypercortisolemia and hippocampal changes in depression. Psychiatry Res. 1993;47(2):163–73. https://doi.org/10.1016/0165-1781(93)90046-J.

    Article  CAS  PubMed  Google Scholar 

  9. Posener JA, DeBattista C, Williams GH, Kraemer HC, Kalehzan BM, Schatzberg AF. 24-hour monitoring of cortisol and corticotropin secretion in psychotic and non-psychotic major depression. Arch Gen Psychiatry. 2000;57(8):755–60. https://doi.org/10.1001/archpsyc.57.8.755.

    Article  CAS  PubMed  Google Scholar 

  10. Belanoff JK, Kalehzan M, Sund B, Ficek SKF, Schatzberg AF. Cortisol activity and cognitive changes in psychotic major depression. Am J Psychiatr. 2001;158(10):1612–6. https://doi.org/10.1176/appi.ajp.158.10.1612.

    Article  CAS  PubMed  Google Scholar 

  11. Bremner JD, Vythilingam M, Vermetten E, Anderson G, Newcomer JW, Charney DS. Effects of glucocorticoids on declarative memory function in major depression. BiolPsychiatry. 2004;55(8):811–5.

    CAS  Google Scholar 

  12. Young EA, Abelson JL, Cameron OG. Effect of comorbid anxiety disorders on the hypothalamic-pituitary-adrenal axis response to a social stressor in major depression. BiolPsychiatry. 2004;56(2):113–20.

    CAS  Google Scholar 

  13. Zorrilla EP, Koob GF. Progress in corticotropin-releasing factor-1 antagonist development. Drug Discov Today. 2010;15(9-10):371–83. https://doi.org/10.1016/j.drudis.2010.02.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Langenecker SA, Jacobs RH, Passarotti AM. Current neural and behavioral dimensional constructs across mood disorders. Current Behavioral Neuroscience Reports. 2014;1:114–53.

    Article  Google Scholar 

  15. Stahl SM. Mechanism of action of serotonin selective reuptake inhibitors. Serotonin receptors and pathways mediate therapeutic effects and side effects. J Affect Disord. 1998;51(3):215–35. https://doi.org/10.1016/S0165-0327(98)00221-3.

    Article  CAS  PubMed  Google Scholar 

  16. Leuchter A, Bissett J, Manberg P, Carpenter L, Massaro JM, George M. The relationship between the individual alpha frequency (IAF) and response to synchronized transcranial magnetic stimulation (sTMS) for treatment of major depressive disorder (MDD). Brain stimulation. 2017;10:492.

    Google Scholar 

  17. Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. BiolPsychiatry. 2008;63(4):349–52.

    CAS  Google Scholar 

  18. •• Gyurak A, Patenaude B, Korgaonkar MS, Grieve SM, Williams LM, Etkin A. Frontoparietal activation during response inhibition predicts remission to antidepressants in patients with major depression. Biol Psychiatry. 2015;79:274–81. I-SPOT study highlights the role of a multi-arm treatment prediction study, and the idea that neuroprediction might be used to guide differential treatment decisions.

    Article  PubMed  Google Scholar 

  19. •• Williams LM, Korgaonkar MS, Song YC, Paton R, Eagles S, Goldstein-Piekarski A, et al. Amygdala reactivity to emotional faces in the prediction of general and medication-specific responses to antidepressant treatment in the randomized iSPOT-D trial. Neuropsychopharmacology. 2015;40(10):2398–408. I-SPOT study highlights the role of a multi-arm treatment prediction study, and also of testing prediction accuracy so that meaingfulness is not defined solely by p values. https://doi.org/10.1038/npp.2015.89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Trivedi MH, McGrath PJ, Fava M, Parsey RV, Kurian BT, Phillips ML, et al. Establishing moderators and biosignatures of antidepressant response in clinical care (EMBARC): rationale and design. J Psychiatr Res. 2016;78:11–23. https://doi.org/10.1016/j.jpsychires.2016.03.001.

    Article  PubMed  Google Scholar 

  21. •• Dunlop BW, Rajendra JK, Craighead WE, Kelley ME, McGrath CL, Choi KS, et al. Functional connectivity of the subcallosal cingulate cortex and differential outcomes to treatment with cognitive-behavioral therapy or antidepressant medication for major depressive disorder. Am J Psychiatr. 2017;174(6):533–45. The study highlights multi-arm study of standardly available treatments, a easily implemented prediction model (if replicated), and testing prediction accuracy so that meaingfulness is not defined solely by p values. https://doi.org/10.1176/appi.ajp.2016.16050518.

    Article  PubMed  Google Scholar 

  22. Ball TM, Goldstein-Piekarski AN, Gatt JM, Williams LM. Quantifying person-level brain network functioning to facilitate clinical translation. Transl Psychiatry. 2017;7(10):e1248. https://doi.org/10.1038/tp.2017.204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hahn T, Kircher T, Straube B, Wittchen HU, Konrad C, Strohle A, et al. Predicting treatment response to cognitive behavioral therapy in panic disorder with agoraphobia by integrating local neural information. JAMA Psychiatry. 2015;72(1):68–74. https://doi.org/10.1001/jamapsychiatry.2014.1741.

    Article  PubMed  Google Scholar 

  24. •• Crane NA, Jenkins LM, Bhaumik R, Dion C, Gowins JR, Mickey BJ, et al. Multidimensional prediction of treatment response to antidepressants with cognitive control and functional MRI. Brain. 2017;140(2):472–86. Study highlights strategy of using mutimodal and multidemensional techniques to enhance prediction, and testing prediction accuracy so that meaingfulness is not defined solely by p values. https://doi.org/10.1093/brain/aww326.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Young KD, Drevets WC, Bodurka J, Preskorn SS. Amygdala activity during autobiographical memory recall as a biomarker for residual symptoms in patients remitted from depression. Psychiatry Res Neuroimaging. 2016;248:159–61. https://doi.org/10.1016/j.pscychresns.2016.01.017.

    Article  PubMed  Google Scholar 

  26. Kornstein S, Schneider R. Clinical features of treatment-resistant depression. J Clin Psychiatry. 2001;62(S16):S18–25.

    Google Scholar 

  27. Shah PJ, Glabus MF, Goodwin GM, Ebmeier KP. Chronic, treatment-resistant depression and right fronto-striatal atrophy. BrJPsychiatry. 2002;180:434–40.

    CAS  Google Scholar 

  28. Fagiolini A, Kupfer DJ. Is treatment-resistant depression a unique subtype of depression? Biol Psychiatry. 2003;53(8):640–8. https://doi.org/10.1016/S0006-3223(02)01670-0.

    Article  PubMed  Google Scholar 

  29. Duhameau B, Ferré J, Jannin P, Gauvrit J, Vérin M, Millet B, et al. Chronic and treatment-resistant depression: a study using arterial spin labeling perfusion MRI at 3 tesla. Psychiatry Res Neuroimaging. 2010;182:6.

    Article  Google Scholar 

  30. de Kwaasteniet BP, Rive MM, Ruhe HG, Schene AH, Veltman DJ, Fellinger L, et al. Decreased resting-state connectivity between neurocognitive networks in treatment resistant depression. Front Psychiatry. 2015;6:28.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pizzagalli DA. Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacol Rev. 2010;36:183–206.

    Article  Google Scholar 

  32. Fu CH, Steiner H, Costafreda SG. Predictive neural biomarkers of clinical response in depression: a meta-analysis of functional and structural neuroimaging studies of pharmacological and psychological therapies. Neurobiol Dis. 2013;52:75–83. https://doi.org/10.1016/j.nbd.2012.05.008.

    Article  CAS  PubMed  Google Scholar 

  33. •• Phillips ML. Identifying predictors, moderators, and mediators of antidepressant response in major depressive disorder: neuroimaging approaches. Am J Psychiatr. 2016;172:124–38. A model driven review of neuroprediction and treatment-induced change, and integrates the idea of mediation and moderation in treatment change in treatments for depression.

    Article  Google Scholar 

  34. Dichter GS, Gibbs D, Smoski MJ. A systematic review of relations between resting-state functional-MRI and treatment response in major depressive disorder. J Affect Disord. 2015;172:8–17. https://doi.org/10.1016/j.jad.2014.09.028.

    Article  PubMed  Google Scholar 

  35. Wessa M, Lois G. Brain functional effects of psychopharmacological treatment in major depression: a focus on neural circuitry of affective processing. Curr Neuropharmacol. 2015;13(4):466–79. https://doi.org/10.2174/1570159X13666150416224801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stevens J. Applied multivariate statistics for the social sciences. Mahwah: Lawrence Ehrlbaum Associates; 1996. p. 659.

    Google Scholar 

  37. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27(9):2349–56. https://doi.org/10.1523/JNEUROSCI.5587-06.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Langenecker SA, Kennedy SE, Guidotti LM, Briceno EM, Own LS, Hooven T, et al. Frontal and limbic activation during inhibitory control predicts treatment response in major depressive disorder. Biol Psychiatry. 2007;62(11):1272–80. https://doi.org/10.1016/j.biopsych.2007.02.019.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lopez-Sola M, Pujol J, Hernandez-Ribas R, Harrison BJ, Contreras-Rodriguez O, Soriano-Mas C, et al. Effects of duloxetine treatment on brain response to painful stimulation in major depressive disorder. Neuropsychopharmacology. 2010;2010:2305–17.

    Article  Google Scholar 

  40. Victor TA, Furey ML, Fromm SJ, Öhman A, Drevets WC. Relationship between amygdala responses to masked faces and mood state and treatment in major depressive disorder. Arch Gen Psychiatry. 2010;67(11):1128–38. https://doi.org/10.1001/archgenpsychiatry.2010.144.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Doerig N, Krieger T, Altenstein D, Schlumpf Y, Spinelli S, Spati J, et al. Amygdala response to self-critical stimuli and symptom improvement in psychotherapy for depression. Br J Psychiatry. 2016;208(2):175–81. https://doi.org/10.1192/bjp.bp.114.149971.

    Article  PubMed  Google Scholar 

  42. Siegle GJ, Thompson WK, Collier A, Berman SR, Feldmiller J, Thase ME, et al. Toward clinically useful neuroimaging in depression treatment: prognostic utility of subgenual cingulate activity for determining depression outcome in cognitive therapy across studies, scanners, and patient characteristics. Arch Gen Psychiatry. 2012;69(9):913–24. https://doi.org/10.1001/archgenpsychiatry.2012.65.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dunlop BW, Rajendra JK, Craighead WE, Kelley ME, McGrath C, Choi KS, et al. Functional connectivity of the subcallosal cingulate cortex and differential outcomes to treatment with cognitive-behavioral therapy or antidepressant medication for major depressive disorder. Am J Psychiatr. 2017;174(6):533–45. https://doi.org/10.1176/appi.ajp.2016.16050518.

    Article  PubMed  Google Scholar 

  44. Davidson RJ, Irwin W, Anderle MJ, Kalin NH. The neural substrates of affective processing in depressed patients treated with venlafaxine. Am J Psychiatr. 2003;160(1):64–75. https://doi.org/10.1176/appi.ajp.160.1.64.

    Article  PubMed  Google Scholar 

  45. Forbes EE, Olino TM, Ryan ND, Birmaher B, Axelson DA, Moyles DL, et al. Reward-related brain function as a predictor of treatment response in adolescents with major depressive disorder. Cognitive Affective & Behavioral Neuroscience. 2010;10(1):107–18. https://doi.org/10.3758/CABN.10.1.107.

    Article  Google Scholar 

  46. Straub J, Plener PL, Sproeber N, Sprenger L, Koelch MG, Groen G, et al. Neural correlates of successful psychotherapy of depression in adolescents. J Affect Disord. 2015;183:239–46. https://doi.org/10.1016/j.jad.2015.05.020.

    Article  CAS  PubMed  Google Scholar 

  47. Carl H, Walsh E, Eisenlohr-Moul T, Minkel J, Crowther A, Moore T, et al. Sustained anterior cingulate cortex activation during reward processing predicts response to psychotherapy in major depressive disorder. J Affect Disord. 2016;203:204–12. https://doi.org/10.1016/j.jad.2016.06.005.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Walsh ND, Williams SCR, Brammer MJ, Bullmore ET, Kim J, Suckling J, et al. A longitudinal functional magnetic resonance imaging study of verbal working memory in depression after antidepressant therapy. Biol Psychiatry. 2007;62(11):1236–43. https://doi.org/10.1016/j.biopsych.2006.12.022.

    Article  CAS  PubMed  Google Scholar 

  49. Costafreda SG, Khanna A, Mourao-Miranda J, Fu CH. Neural correlates of sad faces predict clinical remission to cognitive behavioural therapy in depression. Neuroreport. 2009;20(7):637–41. https://doi.org/10.1097/WNR.0b013e3283294159.

    Article  PubMed  Google Scholar 

  50. Miller JM, Schneck N, Siegle GJ, Chen Y, Ogden RT, Kikuchi T, et al. fMRI response to negative words and SSRI treatment outcome in major depressive disorder: a preliminary study. Psychiatry Res. 2013;214(3):296–305. https://doi.org/10.1016/j.pscychresns.2013.08.001.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ritchey M, Dolcos F, Eddington KM, Strauman TJ. Neural correlates of emotional processing in depression: changes with cognitive behavioral therapy and predictors of treatment response. J Psychiatr Res. 2011;45(5):577–87. https://doi.org/10.1016/j.jpsychires.2010.09.007.

    Article  PubMed  Google Scholar 

  52. Fu CH, Mourao-Miranda J, Costafreda S, Khanna A, Marquand A, Williams S, et al. Pattern classification of sad facial processing: toward the development of neurobiological markers in depression. Biol Psychiatry. 2008;63:7.

    Article  Google Scholar 

  53. Dichter GS, Felder JN, Smoski MJ. The effects of brief behavioral activation therapy for depression on cognitive control in affective contexts: an fMRI investigation. J Affect Disord. 2010;126(1–2):236–44. https://doi.org/10.1016/j.jad.2010.03.022.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Delaveau P, Jabourian M, Lemogne C, Allaili N, Choucha W, Girault N, et al. Antidepressant short-term and long-term brain effects during self-referential processing in major depression. Psychiatry Res. 2016;247:17–24. https://doi.org/10.1016/j.pscychresns.2015.11.007.

    Article  PubMed  Google Scholar 

  55. Rizvi SJ, Salomons TV, Konarski JZ, Downar J, Giacobbe P, Mcintyre RS, et al. Neural response to emotional stimuli associated with successful antidepressant treatment and behavioral activation. J Affect Disord. 151:573–81.

  56. Keedwell PA, Drapier D, Surguladze S, Giampietro V, Brammer M, Phillips ML. Subgenual cingulate and visual cortex responses to sad faces predict clinical outcome during antidepressant treatment for depression. J Affect Disord. 2010;120(1-3):120–5. https://doi.org/10.1016/j.jad.2009.04.031.

    Article  PubMed  Google Scholar 

  57. Gong Q, Wu Q, Scarpazza C, Lui S, Jia Z, Marquand A, et al. Prognostic prediction of therapeutic response in depression using high-field MR imaging. NeuroImage. 2011;55(4):1497–503. https://doi.org/10.1016/j.neuroimage.2010.11.079.

    Article  PubMed  Google Scholar 

  58. Nissen SB, Magidson T, Gross K, Bergstro CT. Research: publication bias and the canonization of false facts. elife. 2016;5:e21451.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jacobs RH, Orr JL, Gowins JR, Forbes EE, Langenecker SA. Biomarkers of intergenerational risk for depression: a review of mechanisms in longitudinal high-risk (LHR) studies. J Affect Disord. 2015;175:494–506. https://doi.org/10.1016/j.jad.2015.01.038.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bertocci MA, Bebko G, Versace A, Fournier JC, Iyengar S, Olino T, et al. Predicting clinical outcome from reward circuitry function and white matter structure in behaviorally and emotionally dysregulated youth. Mol Psychiatry. 2016;21(9):1194–201. https://doi.org/10.1038/mp.2016.5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lythe KE, Moll J, Gethin JA, Workman CI, Green S, Ralph MAL, et al. Self-blame–selective Hyperconnectivity between anterior temporal and Subgenual cortices and prediction of recurrent depressive episodes. JAMA psychiatry. 2015;72(11):1119–26. https://doi.org/10.1001/jamapsychiatry.2015.1813.

    Article  PubMed  Google Scholar 

  62. Serra-Blasco M, de Diego-Adelino J, Vives-Gilabert Y, Trujols J, Puigdemont D, Carceller-Sindreu M, et al. Naturalistic course of major depressive disorder predicted by clinical and structural neuroimaging data: a five year follow-up. Depression and Anxiety. 2016;33(11):1055–64. https://doi.org/10.1002/da.22522.

    Article  Google Scholar 

  63. •• Cochran AL, McInnis MG, Forger DB. Data-driven classification of bipolar I disorder from longitudinal course of mood. Transl Psychiatry. 2016;6(10):e912. Highlights the importance on longitudinal studies in the understanding of disease subtypes, which may be relevant for neuroprediction of treatment response and disease course. https://doi.org/10.1038/tp.2016.166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Feingold A. Effect sizes for growth-modeling analysis for controlled clinical trials in the same metric as for classical analysis. Psychol Methods. 2009;14(1):43–53. https://doi.org/10.1037/a0014699.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Brunoni AR, Lopes M, Kaptchuk TJ, Fregni F. Placebo response of non-pharmacological and pharmacological trials in major depression: a systematic review and meta-analysis. PLoS One. 2009;4(3):e4824. https://doi.org/10.1371/journal.pone.0004824.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Peciña M, Bohnert AS, Sikora M, Avery ET, Langenecker SA, Mickey BJ, et al. Placebo-activated neural systems are linked to antidepressant responses: neurochemistry of placebo effects in major depression. JAMA psychiatry. 2015;72(11):1087–94. https://doi.org/10.1001/jamapsychiatry.2015.1335.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cohen J. A power primer. Psychol Bull. 1992;112(1):155–9. https://doi.org/10.1037/0033-2909.112.1.155.

    Article  CAS  PubMed  Google Scholar 

  68. Jacobson NS, Truax P. Clinical significance: a statistical approach to defining meaningful change in psychotherapy research. Journal of Consulting & Clinical Psychology. 1991;59(1):12–9. https://doi.org/10.1037/0022-006X.59.1.12.

    Article  CAS  Google Scholar 

  69. Jenkins LM, Barba A, Campbell MM, Lamar M, Shankman SA, Leow A, et al. Shared white matter alterations across emotional disorders: a voxel-based meta-analysis of fractional anisotropy. NeuroImage: Clinical. 2016;12:1022–34. https://doi.org/10.1016/j.nicl.2016.09.001.

    Article  Google Scholar 

  70. Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry. 2015.

  71. Satterthwaite TD, Kable JW, Vandekar L, Katchmar N, Bassett DS, Baldassano CF, et al. Common and dissociable dysfunction of the reward system in bipolar and unipolar depression reward dysfunction in depression. Neuropsychopharmacology. 2015.

  72. McTeague LM, Huemer J, Carreon DM, Jiang Y, Eickhoff SB, Etkin A. Identification of common neural circuit disruptions in cognitive control across psychiatric disorders. Am J Psychiatry. 2017;174(7):676–85. https://doi.org/10.1176/appi.ajp.2017.16040400.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Goodkind M, Eickhoff SB, Oathes DJ, Jiang Y, Chang A, Jones-Hagata LB, et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry. 2015;72(4):305–15. https://doi.org/10.1001/jamapsychiatry.2014.2206.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Stange JP, MacNamara A, Barnas O, Kennedy AE, Hajcak G, Phan KL, et al. Neural markers of attention to aversive pictures predict response to cognitive behavioral therapy in anxiety and depression. Biol Psychol. 2017;123:269–77. https://doi.org/10.1016/j.biopsycho.2016.10.009.

    Article  PubMed  Google Scholar 

  75. Nathan PJ, Phan KL, Harmer CJ, Mehta MA, Bullmore ET. Increasing pharmacological knowledge about human neurological and psychiatric disorders through functional neuroimaging and its application in drug discovery. Curr Opin Pharmacol. 2014;14:54–61. https://doi.org/10.1016/j.coph.2013.11.009.

    Article  CAS  PubMed  Google Scholar 

  76. •• Klumpp H, Fitzgerald JM, Kinney KL, Kennedy AE, Shankman SA, Langenecker SA, et al. Predicting cognitive behavioral therapy response in social anxiety disorder with anterior cingulate cortex and amygdala during emotion regulation. NeuroImage Clinical. 2017;15:25–34. Illustrates how diagnoses – that have overlapping symptoms and similar treatments may also have similar neuroprediction models. https://doi.org/10.1016/j.nicl.2017.04.006.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Falconer E, Allen A, Felmingham KL, Williams LM, Bryant RA. Inhibitory neural activity predicts response to cognitive-behavioral therapy for posttraumatic stress disorder. J Clin Psychiatry. 2013;74(9):895–901. https://doi.org/10.4088/JCP.12m08020.

    Article  PubMed  Google Scholar 

  78. •• Nichols TE, Das S, Eickhoff SB, Evans AC, Glatard T, Hanke M, et al. Best practices in data analysis and sharing in neuroimaging using MRI. bioRxiv. 2016:054262. General report of best practices in neuroimaging studies.

Download references

Acknowledgements

Support for this work was provided by MH101487 (SAL, LMJ. KLP, NAC), MH101497 (KLP, HK, SAL), MH112705 (HK, SAL, KLP), T32 MH067631 (NAC, Rasenick Pi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Langenecker.

Ethics declarations

Conflict of Interest

The authors have received grant money from the National Institute of Mental Health.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Mood and Anxiety Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langenecker, S.A., Crane, N.A., Jenkins, L.M. et al. Pathways to Neuroprediction: Opportunities and Challenges to Prediction of Treatment Response in Depression. Curr Behav Neurosci Rep 5, 48–60 (2018). https://doi.org/10.1007/s40473-018-0140-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40473-018-0140-2

Keywords

Navigation