Skip to main content
Log in

Molecular Basis of Cannabis-Induced Schizophrenia-Relevant Behaviours: Insights from Animal Models

  • Genetics and Neuroscience (C O’Tuathaigh, Section Editor)
  • Published:
Current Behavioral Neuroscience Reports Aims and scope Submit manuscript

Abstract

Introduction

Cannabis use is a well-established component risk factor for schizophrenia; however, the mechanisms by which cannabis use increases schizophrenia risk are unclear. Animal models can elucidate mechanisms by which chronic cannabinoid treatment can induce schizophrenia-relevant neural changes, in a standardised manner often not possible using patient-based data.

Methods

We review recent literature (within the past 10 years) using animal models of chronic and subchronic treatment with cannabinoids which target the cannabinoid 1 receptor [i.e. ∆9-tetrahydrocannabinol, CP55,940 and WIN55,212-2]. Schizophrenia-relevant behavioural consequences of chronic cannabinoid treatment are first briefly summarised, followed by a detailed account of changes to several receptor systems [e.g. cannabinoid, dopaminergic, glutamatergic, γ-aminobutyric acid (GABAe)rgic, serotonergic, noradrenergic], dendritic spine morphology and inflammatory markers following chronic cannabinoids. We distinguish between adolescent and adult cannabinoid treatments, to determine if adolescence is a period of susceptibility to schizophrenia-relevant molecular changes.

Results

Chronic cannabinoid treatment induces behaviours relevant to positive, negative and cognitive symptoms of schizophrenia. Chronic cannabinoids also cause region- and subtype-specific changes to receptor systems (e.g. cannabinoid, dopaminergic, glutamatergic, GABAergic), as well as changes in dendritic spine morphology and upregulation of inflammatory markers. These changes often align with molecular changes observed in post-mortem tissue from schizophrenia patients and correspond with schizophrenia-relevant behavioural change in rodents. There is some indication that adolescence is a period of susceptibility to cannabinoid-induced schizophrenia-relevant neural change, but more research in this field is required to confirm this hypothesis.

Conclusions

Animal models indicate several molecular mechanisms by which chronic cannabinoids contribute to schizophrenia-relevant neural and behavioural change. It is likely that a number of these mechanisms are simultaneously impacted by chronic cannabinoids, thereby increasing schizophrenia risk in individuals who use cannabis. Understanding how cannabinoids can affect several molecular targets provides critical insight into the complex relationship between cannabis use and schizophrenia risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Henquet C, Murray R, Linszen D, van Os J. The environment and schizophrenia: the role of cannabis use. Schizophr Bull. 2005;31(3):608–12.

    Article  PubMed  Google Scholar 

  2. Large M, Sharma S, Compton MT, Slade T, Nielssen O. Cannabis use and earlier onset of psychosis: a systematic meta-analysis. Arch Gen Psychiatry. 2011;68(6):555–61.

    Article  PubMed  Google Scholar 

  3. Caspi A, Moffitt TE, Cannon M, McClay J, Murray R, Harrington H, et al. Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: longitudinal evidence of a gene X environment interaction. Biol Psychiatry. 2005;57(10):1117–27.

    Article  CAS  PubMed  Google Scholar 

  4. •• Rubino T, Parolaro D. The impact of exposure to cannabinoids in adolescence: insights from animal models. Biol Psychiatry. 2016;79(7):578–85. Review describing how chronic adolescent cannabinoid exposure affects behavioural domains relevant to schizophrenia.

    Article  CAS  PubMed  Google Scholar 

  5. •• Radhakrishnan R, Wilkinson ST, D’Souza DC. Gone to pot—a review of the association between cannabis and psychosis. Front psych. 2014;5:54. Review describing acute and long-term effects of cannabinoids on schizophrenia symptoms in human patients, as well as moderators of cannabis-induced behaviours (e.g. genetic risk) and provides potential mechanisms for cannabinoid-induced psychosis.

    Google Scholar 

  6. D’Souza DC, Sewell RA, Ranganathan M. Cannabis and psychosis/schizophrenia: human studies. Eur Arch Psychiatry Clin Neurosci. 2009;259(7):413–31.

    Article  PubMed  PubMed Central  Google Scholar 

  7. • Lubman DI, Cheetham A, Yucel M. Cannabis and adolescent brain development. Pharmacol Ther. 2015;148:1–16. Review of human literature which proposes potential mechanisms for adolescent susceptibility to cannabis-induced psychosis.

    Article  CAS  PubMed  Google Scholar 

  8. Spear LP. The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev. 2000;24(4):417–63.

    Article  CAS  PubMed  Google Scholar 

  9. Sengupta P. The laboratory rat: relating its age with human’s. Int J Prev Med. 2013;4(6):624–30.

    PubMed  PubMed Central  Google Scholar 

  10. Enayatfard L, Rostami F, Nasoohi S, Oryan S, Ahmadiani A, Dargahi L. Dual role of PPAR-gamma in induction and expression of behavioral sensitization to cannabinoid receptor agonist WIN55,212-2. NeuroMolecular Med. 2013;15(3):523–35.

    Article  CAS  PubMed  Google Scholar 

  11. Fanarioti E, Mavrikaki M, Panagis G, Mitsacos A, Nomikos GG, Giompres P. Behavioral and neurochemical changes in mesostriatal dopaminergic regions of the rat after chronic administration of the cannabinoid receptor agonist WIN55,212-2. Int J Neuropsychopharmacol. 2014;18(6)

  12. Ginovart N, Tournier BB, Moulin-Sallanon M, Steimer T, Ibanez V, Millet P. Chronic delta(9)-tetrahydrocannabinol exposure induces a sensitization of dopamine D(2)/(3) receptors in the mesoaccumbens and nigrostriatal systems. Neuropsychopharmacology. 2012;37(11):2355–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gomes FV, Guimaraes FS, Grace AA. Effects of pubertal cannabinoid administration on attentional set-shifting and dopaminergic hyper-responsivity in a developmental disruption model of schizophrenia. Int J Neuropsychopharmacol. 2014;18(2)

  14. Harte LC, Dow-Edwards D. Sexually dimorphic alterations in locomotion and reversal learning after adolescent tetrahydrocannabinol exposure in the rat. Neurotoxicol Teratol. 2010;32(5):515–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Klug M, van den Buuse M. An investigation into “two hit” effects of BDNF deficiency and young-adult cannabinoid receptor stimulation on prepulse inhibition regulation and memory in mice. Front Behav Neurosci. 2013;7:149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Long LE, Chesworth R, Huang XF, McGregor IS, Arnold JC, Karl T. Transmembrane domain Nrg1 mutant mice show altered susceptibility to the neurobehavioural actions of repeated THC exposure in adolescence. Int J Neuropsychopharmacol. 2013;16(1):163–75.

    Article  CAS  PubMed  Google Scholar 

  17. O’Brien LD, Wills KL, Segsworth B, Dashney B, Rock EM, Limebeer CL, et al. Effect of chronic exposure to rimonabant and phytocannabinoids on anxiety-like behavior and saccharin palatability. Pharmacol Biochem Behav. 2013;103(3):597–602.

    Article  PubMed  CAS  Google Scholar 

  18. O’Tuathaigh CM, Hryniewiecka M, Behan A, Tighe O, Coughlan C, Desbonnet L, et al. Chronic adolescent exposure to delta-9-tetrahydrocannabinol in COMT mutant mice: impact on psychosis-related and other phenotypes. Neuropsychopharmacology. 2010;35(11):2262–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Puighermanal E, Busquets-Garcia A, Gomis-Gonzalez M, Marsicano G, Maldonado R, Ozaita A. Dissociation of the pharmacological effects of THC by mTOR blockade. Neuropsychopharmacology. 2013;38(7):1334–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tai S, Hyatt WS, Gu C, Franks LN, Vasiljevik T, Brents LK, et al. Repeated administration of phytocannabinoid delta(9)-THC or synthetic cannabinoids JWH-018 and JWH-073 induces tolerance to hypothermia but not locomotor suppression in mice, and reduces CB1 receptor expression and function in a brain region-specific manner. Pharmacol Res. 2015;102:22–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wiley JL, Burston JJ. Sex differences in delta(9)-tetrahydrocannabinol metabolism and in vivo pharmacology following acute and repeated dosing in adolescent rats. Neurosci Lett. 2014;576:51–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wiley JL, Evans RL, Grainger DB, Nicholson KL. Age-dependent differences in sensitivity and sensitization to cannabinoids and ‘club drugs’ in male adolescent and adult rats. Addict Biol. 2008;13(3–4):277–86.

    Article  CAS  PubMed  Google Scholar 

  23. Zamberletti E, Beggiato S, Steardo L Jr, Prini P, Antonelli T, Ferraro L, et al. Alterations of prefrontal cortex GABAergic transmission in the complex psychotic-like phenotype induced by adolescent delta-9-tetrahydrocannabinol exposure in rats. Neurobiol Dis. 2014;63:35–47.

    Article  CAS  PubMed  Google Scholar 

  24. • Bambico FR, Nguyen NT, Katz N, Gobbi G. Chronic exposure to cannabinoids during adolescence but not during adulthood impairs emotional behaviour and monoaminergic neurotransmission. Neurobiol Dis. 2010;37(3):641–55. Compares chronic WIN-55,212-2 treatment in adolescent and adult rats; demonstrates long-lasting effects of adolescent, but not adult WIN-55, 212-2 on sucrose preference, as well as serotonergic and noradrenergic cell firing.

    Article  CAS  PubMed  Google Scholar 

  25. Klein C, Karanges E, Spiro A, Wong A, Spencer J, Huynh T, et al. Cannabidiol potentiates delta(9)-tetrahydrocannabinol (THC) behavioural effects and alters THC pharmacokinetics during acute and chronic treatment in adolescent rats. Psychopharmacology. 2011;218(2):443–57.

    Article  CAS  PubMed  Google Scholar 

  26. Leweke FM, Schneider M. Chronic pubertal cannabinoid treatment as a behavioural model for aspects of schizophrenia: effects of the atypical antipsychotic quetiapine. Int J Neuropsychopharmacol. 2011;14(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  27. O’Tuathaigh CM, Clarke G, Walsh J, Desbonnet L, Petit E, O’Leary C, et al. Genetic vs. pharmacological inactivation of COMT influences cannabinoid-induced expression of schizophrenia-related phenotypes. Int J Neuropsychopharmacol. 2012;15(9):1331–42.

    Article  PubMed  CAS  Google Scholar 

  28. Quinn HR, Matsumoto I, Callaghan PD, Long LE, Arnold JC, Gunasekaran N, et al. Adolescent rats find repeated delta(9)-THC less aversive than adult rats but display greater residual cognitive deficits and changes in hippocampal protein expression following exposure. Neuropsychopharmacology. 2008;33(5):1113–26.

    Article  PubMed  Google Scholar 

  29. Realini N, Vigano D, Guidali C, Zamberletti E, Rubino T, Parolaro D. Chronic URB597 treatment at adulthood reverted most depressive-like symptoms induced by adolescent exposure to THC in female rats. Neuropharmacology. 2011;60(2–3):235–43.

    Article  CAS  PubMed  Google Scholar 

  30. Rubino T, Vigano D, Realini N, Guidali C, Braida D, Capurro V, et al. Chronic delta 9-tetrahydrocannabinol during adolescence provokes sex-dependent changes in the emotional profile in adult rats: behavioral and biochemical correlates. Neuropsychopharmacology. 2008;33(11):2760–71.

    Article  CAS  PubMed  Google Scholar 

  31. Zamberletti E, Gabaglio M, Prini P, Rubino T, Parolaro D. Cortical neuroinflammation contributes to long-term cognitive dysfunctions following adolescent delta-9-tetrahydrocannabinol treatment in female rats. Eur Neuropsychopharmacol. 2015;25(12):2404–15.

    Article  CAS  PubMed  Google Scholar 

  32. Abboussi O, Tazi A, Paizanis E, El Ganouni S. Chronic exposure to WIN55,212-2 affects more potently spatial learning and memory in adolescents than in adult rats via a negative action on dorsal hippocampal neurogenesis. Pharmacol Biochem Behav. 2014;120:95–102.

    Article  CAS  PubMed  Google Scholar 

  33. Abboussi O, Said N, Fifel K, Lakehayli S, Tazi A, El Ganouni S. Behavioral effects of D3 receptor inhibition and 5-HT4 receptor activation on animals undergoing chronic cannabinoid exposure during adolescence. Metab Brain Dis. 2016;31(2):321–7.

    Article  CAS  PubMed  Google Scholar 

  34. Abush H, Akirav I. Short- and long-term cognitive effects of chronic cannabinoids administration in late-adolescence rats. PLoS One. 2012;7(2):e31731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cha YM, Jones KH, Kuhn CM, Wilson WA, Swartzwelder HS. Sex differences in the effects of delta9-tetrahydrocannabinol on spatial learning in adolescent and adult rats. Behav Pharmacol. 2007;18(5–6):563–9.

    Article  CAS  PubMed  Google Scholar 

  36. Cutando L, Busquets-Garcia A, Puighermanal E, Gomis-Gonzalez M, Delgado-Garcia JM, Gruart A, et al. Microglial activation underlies cerebellar deficits produced by repeated cannabis exposure. J Clin Invest. 2013;123(7):2816–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gleason KA, Birnbaum SG, Shukla A, Ghose S. Susceptibility of the adolescent brain to cannabinoids: long-term hippocampal effects and relevance to schizophrenia. Transl Psychiatry. 2012;2:e199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Higuera-Matas A, Botreau F, Miguens M, Del Olmo N, Borcel E, Perez-Alvarez L, et al. Chronic periadolescent cannabinoid treatment enhances adult hippocampal PSA-NCAM expression in male Wistar rats but only has marginal effects on anxiety, learning and memory. Pharmacol Biochem Behav. 2009;93(4):482–90.

    Article  CAS  PubMed  Google Scholar 

  39. Irimia C, Polis IY, Stouffer D, Parsons LH. Persistent effects of chronic delta9-THC exposure on motor impulsivity in rats. Psychopharmacology. 2015;232(16):3033–43.

    Article  CAS  PubMed  Google Scholar 

  40. Kirschmann EK, Pollock MW, Nagarajan V, Torregrossa MM. Effects of adolescent cannabinoid self-administration in rats on addiction-related behaviors and working memory. Neuropsychopharmacology. 2017;42(5):989–1000.

    Article  CAS  PubMed  Google Scholar 

  41. Lovelace JW, Corches A, Vieira PA, Hiroto AS, Mackie K, Korzus E. An animal model of female adolescent cannabinoid exposure elicits a long-lasting deficit in presynaptic long-term plasticity. Neuropharmacology. 2015;99:242–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Raver SM, Haughwout SP, Keller A. Adolescent cannabinoid exposure permanently suppresses cortical oscillations in adult mice. Neuropsychopharmacology. 2013;38(12):2338–47.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Renard J, Krebs MO, Jay TM, Le Pen G. Long-term cognitive impairments induced by chronic cannabinoid exposure during adolescence in rats: a strain comparison. Psychopharmacology. 2013;225(4):781–90.

    Article  CAS  PubMed  Google Scholar 

  44. Rubino T, Realini N, Braida D, Guidi S, Capurro V, Vigano D, et al. Changes in hippocampal morphology and neuroplasticity induced by adolescent THC treatment are associated with cognitive impairment in adulthood. Hippocampus. 2009;19(8):763–72.

    Article  CAS  PubMed  Google Scholar 

  45. Rubino T, Realini N, Braida D, Alberio T, Capurro V, Vigano D, et al. The depressive phenotype induced in adult female rats by adolescent exposure to THC is associated with cognitive impairment and altered neuroplasticity in the prefrontal cortex. Neurotox Res. 2009;15(4):291–302.

    Article  CAS  PubMed  Google Scholar 

  46. Rubino T, Prini P, Piscitelli F, Zamberletti E, Trusel M, Melis M, et al. Adolescent exposure to THC in female rats disrupts developmental changes in the prefrontal cortex. Neurobiol Dis. 2015;73:60–9.

    Article  CAS  PubMed  Google Scholar 

  47. Steel RW, Miller JH, Sim DA, Day DJ. Learning impairment by delta(9)-tetrahydrocannabinol in adolescence is attributable to deficits in chunking. Behav Pharmacol. 2011;22(8):837–46.

    Article  CAS  PubMed  Google Scholar 

  48. Tantra M, Krocher T, Papiol S, Winkler D, Rockle I, Jatho J, et al. St8sia2 deficiency plus juvenile cannabis exposure in mice synergistically affect higher cognition in adulthood. Behav Brain Res. 2014;275:166–75.

    Article  CAS  PubMed  Google Scholar 

  49. Verrico CD, Gu H, Peterson ML, Sampson AR, Lewis DA. Repeated delta9-tetrahydrocannabinol exposure in adolescent monkeys: persistent effects selective for spatial working memory. Am J Psychiatry. 2014;171(4):416–25.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Weed PF, Filipeanu CM, Ketchum MJ, Winsauer PJ. Chronic delta9-tetrahydrocannabinol during adolescence differentially modulates striatal CB1 receptor expression and the acute and chronic effects on learning in adult rats. J Pharmacol Exp Ther. 2016;356(1):20–31.

    Article  CAS  PubMed  Google Scholar 

  51. Winsauer PJ, Daniel JM, Filipeanu CM, Leonard ST, Hulst JL, Rodgers SP, et al. Long-term behavioral and pharmacodynamic effects of delta-9-tetrahydrocannabinol in female rats depend on ovarian hormone status. Addict Biol. 2011;16(1):64–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Winsauer PJ, Sutton JL. Chronic administration during early adulthood does not alter the hormonally-dependent disruptive effects of delta-9-tetrahydrocannabinol (delta9-THC) on complex behavior in female rats. Pharmacol Biochem Behav. 2014;117:118–27.

    Article  CAS  PubMed  Google Scholar 

  53. Llorente-Berzal A, Fuentes S, Gagliano H, Lopez-Gallardo M, Armario A, Viveros MP, et al. Sex-dependent effects of maternal deprivation and adolescent cannabinoid treatment on adult rat behaviour. Addict Biol. 2011;16(4):624–37.

    Article  CAS  PubMed  Google Scholar 

  54. Marusich JA, Lefever TW, Antonazzo KR, Craft RM, Wiley JL. Evaluation of sex differences in cannabinoid dependence. Drug Alcohol Depend. 2014;137:20–8.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Silva L, Black R, Michaelides M, Hurd YL, Dow-Edwards D. Sex and age specific effects of delta-9-tetrahydrocannabinol during the periadolescent period in the rat: the unique susceptibility of the prepubescent animal. Neurotoxicol Teratol. 2016;58:88–100.

    Article  CAS  Google Scholar 

  56. Tournier BB, Ginovart N. Repeated but not acute treatment with (9)-tetrahydrocannabinol disrupts prepulse inhibition of the acoustic startle: reversal by the dopamine D(2)/(3) receptor antagonist haloperidol. Eur Neuropsychopharmacol. 2014;24(8):1415–23.

    Article  CAS  PubMed  Google Scholar 

  57. Wegener N, Koch M. Behavioural disturbances and altered Fos protein expression in adult rats after chronic pubertal cannabinoid treatment. Brain Res. 2009;1253:81–91.

    Article  CAS  PubMed  Google Scholar 

  58. Gur RE, Keshavan MS, Lawrie SM. Deconstructing psychosis with human brain imaging. Schizophr Bull. 2007;33(4):921–31.

    Article  PubMed  PubMed Central  Google Scholar 

  59. • Jones CA, Watson DJ, Fone KC. Animal models of schizophrenia. Br J Pharmacol. 2011;164(4):1162–94. Review describing genetic, pharmacological, neurodevelopmental and lesion-induced animal models of schizophrenia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Perry W, Minassian A, Henry B, Kincaid M, Young JW, Geyer MA. Quantifying over-activity in bipolar and schizophrenia patients in a human open field paradigm. Psychiatry Res. 2010;178(1):84–91.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Perry W, Minassian A, Paulus MP, Young JW, Kincaid MJ, Ferguson EJ, et al. A reverse-translational study of dysfunctional exploration in psychiatric disorders: from mice to men. Arch Gen Psychiatry. 2009;66(10):1072–80.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mei L, Xiong WC. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci. 2008;9(6):437–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Williams HJ, Owen MJ, O’Donovan MC. Is COMT a susceptibility gene for schizophrenia? Schizophr Bull. 2007;33(3):635–41.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Han S, Yang BZ, Kranzler HR, Oslin D, Anton R, Farrer LA, et al. Linkage analysis followed by association show NRG1 associated with cannabis dependence in African Americans. Biol Psychiatry. 2012;72(8):637–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pertwee RG. Ligands that target cannabinoid receptors in the brain: from THC to anandamide and beyond. Addict Biol. 2008;13(2):147–59.

    Article  CAS  PubMed  Google Scholar 

  66. Powell CM, Miyakawa T. Schizophrenia-relevant behavioral testing in rodent models: a uniquely human disorder? Biol Psychiatry. 2006;59(12):1198–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. •• Pratt J, Winchester C, Dawson N, Morris B. Advancing schizophrenia drug discovery: optimizing rodent models to bridge the translational gap. Nat Rev Drug Discov. 2012;11(7):560–79. Critical review of animal models for schizophrenia. Outlines limitations and suggests improvements to currently used models.

    Article  CAS  PubMed  Google Scholar 

  68. Powell SB, Weber M, Geyer MA. Genetic models of sensorimotor gating: relevance to neuropsychiatric disorders. Curr Top Behav Neurosci. 2012;12:251–318.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Behan AT, Hryniewiecka M, O’Tuathaigh CM, Kinsella A, Cannon M, Karayiorgou M, et al. Chronic adolescent exposure to delta-9-tetrahydrocannabinol in COMT mutant mice: impact on indices of dopaminergic, endocannabinoid and GABAergic pathways. Neuropsychopharmacology. 2012;37(7):1773–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lopez-Gallardo M, Lopez-Rodriguez AB, Llorente-Berzal A, Rotllant D, Mackie K, Armario A, et al. Maternal deprivation and adolescent cannabinoid exposure impact hippocampal astrocytes, CB1 receptors and brain-derived neurotrophic factor in a sexually dimorphic fashion. Neuroscience. 2012;204:90–103.

    Article  CAS  PubMed  Google Scholar 

  71. Silva L, Harte-Hargrove L, Izenwasser S, Frank A, Wade D, Dow-Edwards D. Sex-specific alterations in hippocampal cannabinoid 1 receptor expression following adolescent delta-9-tetrahydrocannabinol treatment in the rat. Neurosci Lett. 2015;602:89–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Thibault K, Carrel D, Bonnard D, Gallatz K, Simon A, Biard M, et al. Activation-dependent subcellular distribution patterns of CB1 cannabinoid receptors in the rat forebrain. Cereb Cortex. 2013;23(11):2581–91.

    Article  PubMed  Google Scholar 

  73. Higuera-Matas A, Botreau F, Del Olmo N, Miguens M, Olias O, Montoya GL, et al. Periadolescent exposure to cannabinoids alters the striatal and hippocampal dopaminergic system in the adult rat brain. Eur Neuropsychopharmacol. 2010;20(12):895–906.

    Article  CAS  PubMed  Google Scholar 

  74. Lobo MK, Zaman S, Damez-Werno DM, Koo JW, Bagot RC, DiNieri JA, et al. DeltaFosB induction in striatal medium spiny neuron subtypes in response to chronic pharmacological, emotional, and optogenetic stimuli. J Neurosci. 2013;33(47):18381–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fan N, Yang H, Zhang J, Chen C. Reduced expression of glutamate receptors and phosphorylation of CREB are responsible for in vivo delta9-THC exposure-impaired hippocampal synaptic plasticity. J Neurochem. 2010;112(3):691–702.

    Article  CAS  PubMed  Google Scholar 

  76. Renard J, Vitalis T, Rame M, Krebs MO, Lenkei Z, Le Pen G, et al. Chronic cannabinoid exposure during adolescence leads to long-term structural and functional changes in the prefrontal cortex. Eur Neuropsychopharmacol. 2016;26(1):55–64.

    Article  CAS  PubMed  Google Scholar 

  77. Candelaria-Cook FT, Hamilton DA. Chronic cannabinoid agonist (WIN 55,212-2) exposure alters hippocampal dentate gyrus spine density in adult rats. Brain Res. 2014;1542:104–10.

    Article  CAS  PubMed  Google Scholar 

  78. • Moretti S, Franchi S, Castelli M, Amodeo G, Somaini L, Panerai A, et al. Exposure of adolescent mice to delta-9-tetrahydrocannabinol induces long-lasting modulation of pro- and anti-inflammatory cytokines in hypothalamus and hippocampus similar to that observed for peripheral macrophages. J NeuroImmune Pharmacol. 2015;10(2):371–9. Demonstrates that adolescent, but not adult THC treatment causes long-lasting changes to inflammatory markers in the hippocampus and hypothalamus.

    Article  PubMed  Google Scholar 

  79. Volk DW, Eggan SM, Horti AG, Wong DF, Lewis DA. Reciprocal alterations in cortical cannabinoid. Receptor 1 binding relative to protein immunoreactivity and transcript levels in schizophrenia. Schizophr Res. 2014;159(1):124–9.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rais M, van Haren NE, Cahn W, Schnack HG, Lepage C, Collins L, et al. Cannabis use and progressive cortical thickness loss in areas rich in CB1 receptors during the first five years of schizophrenia. Eur Neuropsychopharmacol. 2010;20(12):855–65.

    Article  CAS  PubMed  Google Scholar 

  81. Rapp C, Walter A, Studerus E, Bugra H, Tamagni C, Rothlisberger M, et al. Cannabis use and brain structural alterations of the cingulate cortex in early psychosis. Psychiatry Res. 2013;214(2):102–8.

    Article  CAS  PubMed  Google Scholar 

  82. Seillier A, Martinez AA, Giuffrida A. Phencyclidine-induced social withdrawal results from deficient stimulation of cannabinoid CB(1) receptors: implications for schizophrenia. Neuropsychopharmacology. 2013;38(9):1816–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Seeman P. Atypical antipsychotics: mechanism of action. Can J Psychiatr. 2002;47(1):27–38.

    Google Scholar 

  84. Bolkan SS, Carvalho Poyraz F, Kellendonk C. Using human brain imaging studies as a guide toward animal models of schizophrenia. Neuroscience. 2016;321:77–98.

    Article  CAS  PubMed  Google Scholar 

  85. Brisch R, Saniotis A, Wolf R, Bielau H, Bernstein HG, Steiner J, et al. The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: old fashioned, but still in vogue. Front psych. 2014;5:47.

    Google Scholar 

  86. Howes OD, Kambeitz J, Kim E, Stahl D, Slifstein M, Abi-Dargham A, et al. The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Arch Gen Psychiatry. 2012;69(8):776–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kambeitz J, Abi-Dargham A, Kapur S, Howes OD. Alterations in cortical and extrastriatal subcortical dopamine function in schizophrenia: systematic review and meta-analysis of imaging studies. Br J Psychiatry. 2014;204(6):420–9.

    Article  PubMed  Google Scholar 

  88. Fusar-Poli P, Meyer-Lindenberg A. Striatal presynaptic dopamine in schizophrenia, part I: meta-analysis of dopamine active transporter (DAT) density. Schizophr Bull. 2013;39(1):22–32.

    Article  PubMed  Google Scholar 

  89. Moghaddam B, Javitt D. From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology. 2012;37(1):4–15.

    Article  CAS  PubMed  Google Scholar 

  90. Poels EM, Kegeles LS, Kantrowitz JT, Javitt DC, Lieberman JA, Abi-Dargham A, et al. Glutamatergic abnormalities in schizophrenia: a review of proton MRS findings. Schizophr Res. 2014;152(2–3):325–32.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Balu DT, Coyle JT. The NMDA receptor ‘glycine modulatory site’ in schizophrenia: D-serine, glycine, and beyond. Curr Opin Pharmacol. 2015;20:109–15.

    Article  CAS  PubMed  Google Scholar 

  92. Hu W, MacDonald ML, Elswick DE, Sweet RA. The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies. Ann N Y Acad Sci. 2015;1338:38–57.

    Article  CAS  PubMed  Google Scholar 

  93. Kristiansen LV, Huerta I, Beneyto M, Meador-Woodruff JH. NMDA receptors and schizophrenia. Curr Opin Pharmacol. 2007;7(1):48–55.

    Article  CAS  PubMed  Google Scholar 

  94. Vinkers CH, Mirza NR, Olivier B, Kahn RS. The inhibitory GABA system as a therapeutic target for cognitive symptoms in schizophrenia: investigational agents in the pipeline. Expert Opin Investig Drugs. 2010;19(10):1217–33.

    Article  CAS  PubMed  Google Scholar 

  95. Lewis DA, Curley AA, Glausier JR, Volk DW. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci. 2012;35(1):57–67.

    Article  CAS  PubMed  Google Scholar 

  96. Tse MT, Piantadosi PT, Floresco SB. Prefrontal cortical gamma-aminobutyric acid transmission and cognitive function: drawing links to schizophrenia from preclinical research. Biol Psychiatry. 2015;77(11):929–39.

    Article  CAS  PubMed  Google Scholar 

  97. Selvaraj S, Arnone D, Cappai A, Howes O. Alterations in the serotonin system in schizophrenia: a systematic review and meta-analysis of postmortem and molecular imaging studies. Neurosci Biobehav Rev. 2014;45:233–45.

    Article  CAS  PubMed  Google Scholar 

  98. Yamamoto K, Hornykiewicz O. Proposal for a noradrenaline hypothesis of schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2004;28(5):913–22.

    Article  CAS  Google Scholar 

  99. Muntoni AL, Pillolla G, Melis M, Perra S, Gessa GL, Pistis M. Cannabinoids modulate spontaneous neuronal activity and evoked inhibition of locus coeruleus noradrenergic neurons. Eur J Neurosci. 2006;23(9):2385–94.

    Article  PubMed  Google Scholar 

  100. Selemon LD, Zecevic N. Schizophrenia: a tale of two critical periods for prefrontal cortical development. Transl Psychiatry. 2015;5:e623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Moyer CE, Shelton MA, Sweet RA. Dendritic spine alterations in schizophrenia. Neurosci Lett. 2015;601:46–53.

    Article  CAS  PubMed  Google Scholar 

  102. Leza JC, Garcia-Bueno B, Bioque M, Arango C, Parellada M, Do K, et al. Inflammation in schizophrenia: a question of balance. Neurosci Biobehav Rev. 2015;55:612–26.

    Article  PubMed  Google Scholar 

  103. Feigenson KA, Kusnecov AW, Silverstein SM. Inflammation and the two-hit hypothesis of schizophrenia. Neurosci Biobehav Rev. 2014;38:72–93.

    Article  PubMed  Google Scholar 

  104. Watkins CC, Andrews SR. Clinical studies of neuroinflammatory mechanisms in schizophrenia. Schizophr Res. 2016;176(1):14–22.

    Article  PubMed  Google Scholar 

  105. Flatow J, Buckley P, Miller BJ. Meta-analysis of oxidative stress in schizophrenia. Biol Psychiatry. 2013;74(6):400–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Karl.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Genetics and Neuroscience

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chesworth, R., Karl, T. Molecular Basis of Cannabis-Induced Schizophrenia-Relevant Behaviours: Insights from Animal Models. Curr Behav Neurosci Rep 4, 254–279 (2017). https://doi.org/10.1007/s40473-017-0120-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40473-017-0120-y

Keywords

Navigation