Skip to main content

Advertisement

Log in

Mesenchymal Stem Cells to Treat Digestive System Disorders: Progress Made and Future Directions

  • Cellular Transplants (G Orlando, Section Editor)
  • Published:
Current Transplantation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to summarize the results from clinical trials that evoked promise and discouragement for the use of mesenchymal stem cells (MSCs) to treat digestive system disorders.

Recent Findings

Adult MSCs are defined as a non-homogeneous population of pluripotent progenitor cells, which can be isolated and expanded in vitro from different tissues. The differentiation capacity of MSC along mesenchymal lineages and their immunomodulatory properties have been considered a new therapeutic approach for intestinal disorders. A dysregulated immune response is the cause and sustainment of these disorders, as they are characterized by progressive tissue damage with no available curative treatment.

Up to now, 130 clinical trials on MSC-based therapy are registered to treat conditions affecting the digestive system.

Summary

The results from completed or underway clinical studies are encouraging, showing both benefit for those digestive disorders refractory to any conventional therapy and progression toward end-stage liver disease. However, the absence of large, robust controlled, and randomized clinical trials to assess MSC clinical efficacy limits MSC-based therapy translation to bedside reality to completely cure digestive disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276(5309):71–4.

    Article  CAS  PubMed  Google Scholar 

  2. Le Blanc K, Samuelsson H, Gustafsson B, Remberger M, Sundberg B, Arvidson J, et al. Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia. 2007;21(8):1733–8. https://doi.org/10.1038/sj.leu.2404777.

    Article  CAS  PubMed  Google Scholar 

  3. Manieri NA, Stappenbeck TS. Mesenchymal stem cell therapy of intestinal disease: are their effects systemic or localized? Curr Opin Gastroenterol. 2011;27(2):119–24. https://doi.org/10.1097/MOG.0b013e3283423f20.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol. 1976;4(5):267–74.

    CAS  PubMed  Google Scholar 

  5. Sekiya I, Larson BL, Smith JR, Pochampally R, Cui JG, Prockop DJ. Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells. 2002;20(6):530–41. https://doi.org/10.1634/stemcells.20-6-530.

    Article  PubMed  Google Scholar 

  6. Castro-Malaspina H, Gay RE, Resnick G, Kapoor N, Meyers P, Chiarieri D, et al. Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood. 1980;56(2):289–301.

    CAS  PubMed  Google Scholar 

  7. Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, et al. Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy. 2005;7(5):393–5. https://doi.org/10.1080/14653240500319234.

    Article  CAS  PubMed  Google Scholar 

  8. Haynesworth SE, Baber MA, Caplan AI. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone. 1992;13(1):69–80.

    Article  CAS  PubMed  Google Scholar 

  9. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003;31(10):890–6.

    Article  PubMed  Google Scholar 

  10. Haynesworth SE, Goshima J, Goldberg VM, Caplan AI. Characterization of cells with osteogenic potential from human marrow. Bone. 1992;13(1):81–8.

    Article  CAS  PubMed  Google Scholar 

  11. Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, et al. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res. 2000;2(6):477–88. https://doi.org/10.1186/ar130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 2000;109(1):235–42.

    Article  CAS  PubMed  Google Scholar 

  13. Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE. Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells. 2005;23(2):220–9. https://doi.org/10.1634/stemcells.2004-0166.

    Article  PubMed  Google Scholar 

  14. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95. https://doi.org/10.1091/mbc.e02-02-0105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. In 't Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FH, Willemze R, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003;102(4):1548–9. https://doi.org/10.1182/blood-2003-04-1291.

    Article  CAS  PubMed  Google Scholar 

  16. De Bari C, Dell'Accio F, Vandenabeele F, Vermeesch JR, Raymackers JM, Luyten FP. Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J Cell Biol. 2003;160(6):909–18. https://doi.org/10.1083/jcb.200212064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jones EA, English A, Henshaw K, Kinsey SE, Markham AF, Emery P, et al. Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum. 2004;50(3):817–27. https://doi.org/10.1002/art.20203.

    Article  PubMed  Google Scholar 

  18. Nakahara H, Dennis JE, Bruder SP, Haynesworth SE, Lennon DP, Caplan AI. In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells. Exp Cell Res. 1991;195(2):492–503.

    Article  CAS  PubMed  Google Scholar 

  19. Dowthwaite GP, Bishop JC, Redman SN, Khan IM, Rooney P, Evans DJ, et al. The surface of articular cartilage contains a progenitor cell population. J Cell Sci. 2004;117(Pt 6):889–97. https://doi.org/10.1242/jcs.00912.

    Article  CAS  PubMed  Google Scholar 

  20. Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood. 2001;98(8):2396–402.

    Article  CAS  PubMed  Google Scholar 

  21. Musina RA, Belyavski AV, Tarusova OV, Solovyova EV, Sukhikh GT. Endometrial mesenchymal stem cells isolated from the menstrual blood. Bull Exp Biol Med. 2008;145(4):539–43.

    Article  CAS  PubMed  Google Scholar 

  22. Kotobuki N, Hirose M, Takakura Y, Ohgushi H. Cultured autologous human cells for hard tissue regeneration: preparation and characterization of mesenchymal stem cells from bone marrow. Artif Organs. 2004;28(1):33–9.

    Article  PubMed  Google Scholar 

  23. Yu G, Wu X, Dietrich MA, Polk P, Scott LK, Ptitsyn AA, et al. Yield and characterization of subcutaneous human adipose-derived stem cells by flow cytometric and adipogenic mRNA analyzes. Cytotherapy. 2010;12(4):538–46. https://doi.org/10.3109/14653241003649528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Woo DH, Hwang HS, Shim JH. Comparison of adult stem cells derived from multiple stem cell niches. Biotechnol Lett. 2016;38(5):751–9. https://doi.org/10.1007/s10529-016-2050-2.

    Article  CAS  PubMed  Google Scholar 

  25. Mohamed-Ahmed S, Fristad I, Lie SA, Suliman S, Mustafa K, Vindenes H, et al. Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison. Stem Cell Res Ther. 2018;9(1):168. https://doi.org/10.1186/s13287-018-0914-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arufe MC, De la Fuente A, Fuentes I, Toro FJ, Blanco FJ. Umbilical cord as a mesenchymal stem cell source for treating joint pathologies. World J Orthop. 2011;2(6):43–50. https://doi.org/10.5312/wjo.v2.i6.43.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wu KH, Chan CK, Tsai C, Chang YH, Sieber M, Chiu TH, et al. Effective treatment of severe steroid-resistant acute graft-versus-host disease with umbilical cord-derived mesenchymal stem cells. Transplantation. 2011;91(12):1412–6. https://doi.org/10.1097/TP.0b013e31821aba18.

    Article  PubMed  Google Scholar 

  28. Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol. 2009;20(5):1053–67. https://doi.org/10.1681/ASN.2008070798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Akyurekli C, Le Y, Richardson RB, Fergusson D, Tay J, Allan DS. A systematic review of preclinical studies on the therapeutic potential of mesenchymal stromal cell-derived microvesicles. Stem Cell Rev. 2015;11(1):150–60. https://doi.org/10.1007/s12015-014-9545-9.

    Article  CAS  Google Scholar 

  30. Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood. 2007;110(10):3499–506. https://doi.org/10.1182/blood-2007-02-069716.

    Article  CAS  PubMed  Google Scholar 

  31. Francois M, Romieu-Mourez R, Li M, Galipeau J. Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol. Ther. : the journal of the American Society of Gene Therapy. 2012;20(1):187–95. https://doi.org/10.1038/mt.2011.189.

    Article  CAS  PubMed  Google Scholar 

  32. Prockop DJ. Concise review: two negative feedback loops place mesenchymal stem/stromal cells at the center of early regulators of inflammation. Stem Cells. 2013;31(10):2042–6. https://doi.org/10.1002/stem.1400.

    Article  CAS  PubMed  Google Scholar 

  33. Bernardo ME, Fibbe WE. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell. 2013;13(4):392–402. https://doi.org/10.1016/j.stem.2013.09.006.

    Article  CAS  PubMed  Google Scholar 

  34. Augello A, Tasso R, Negrini SM, Amateis A, Indiveri F, Cancedda R, et al. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol. 2005;35(5):1482–90. https://doi.org/10.1002/eji.200425405.

    Article  CAS  PubMed  Google Scholar 

  35. • Wang Y, Chen X, Cao W, Shi Y. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol. 2014;15(11):1009–16. https://doi.org/10.1038/ni.3002 Describes the cellular and molecular mechanisms of the interaction between MSCs and various participants in inflammation.

    Article  CAS  PubMed  Google Scholar 

  36. Gao WX, Sun YQ, Shi J, Li CL, Fang SB, Wang D, et al. Effects of mesenchymal stem cells from human induced pluripotent stem cells on differentiation, maturation, and function of dendritic cells. Stem Cell Res Ther. 2017;8(1):48. https://doi.org/10.1186/s13287-017-0499-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ge W, Jiang J, Arp J, Liu W, Garcia B, Wang H. Regulatory T-cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression. Transplantation. 2010;90(12):1312–20. https://doi.org/10.1097/TP.0b013e3181fed001.

    Article  CAS  PubMed  Google Scholar 

  38. Su J, Chen X, Huang Y, Li W, Li J, Cao K, et al. Phylogenetic distinction of iNOS and IDO function in mesenchymal stem cell-mediated immunosuppression in mammalian species. Cell Death Differ. 2014;21(3):388–96. https://doi.org/10.1038/cdd.2013.149.

    Article  CAS  PubMed  Google Scholar 

  39. Milner CM, Day AJ. TSG-6: a multifunctional protein associated with inflammation. J Cell Sci. 2003;116(Pt 10):1863–73. https://doi.org/10.1242/jcs.00407.

    Article  CAS  PubMed  Google Scholar 

  40. Wisniewski HG, Vilcek J. Cytokine-induced gene expression at the crossroads of innate immunity, inflammation and fertility: TSG-6 and PTX3/TSG-14. Cytokine Growth Factor Rev. 2004;15(2–3):129–46. https://doi.org/10.1016/j.cytogfr.2004.01.005.

    Article  CAS  PubMed  Google Scholar 

  41. Day AJ, Milner CM. TSG-6: a multifunctional protein with anti-inflammatory and tissue-protective properties. Matrix Biol : journal of the International Society for Matrix Biology. 2018. https://doi.org/10.1016/j.matbio.2018.01.011.

  42. Romano B, Elangovan S, Erreni M, Emanuela S, Petti L, Kunderfranco P, et al. TNF-stimulated gene-6 (TSG-6) is a key regulator in switching stemness and biological properties of mesenchymal stem cells. Stem Cells. 2019. doi:https://doi.org/10.1002/stem.3010.

  43. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell. 2009;5(1):54–63. https://doi.org/10.1016/j.stem.2009.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee RH, Yu JM, Foskett AM, Peltier G, Reneau JC, Bazhanov N, et al. TSG-6 as a biomarker to predict efficacy of human mesenchymal stem/progenitor cells (hMSCs) in modulating sterile inflammation in vivo. Proc Natl Acad Sci U S A. 2014;111(47):16766–71. https://doi.org/10.1073/pnas.1416121111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. He Z, Hua J, Qian D, Gong J, Lin S, Xu C, et al. Intravenous hMSCs ameliorate acute pancreatitis in mice via secretion of tumor necrosis factor-alpha stimulated gene/protein 6. Sci Rep. 2016;6:38438. https://doi.org/10.1038/srep38438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Qi Y, Jiang D, Sindrilaru A, Stegemann A, Schatz S, Treiber N, et al. TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds. J Invest Dermatol. 2014;134(2):526–37. https://doi.org/10.1038/jid.2013.328.

    Article  CAS  PubMed  Google Scholar 

  47. •• Sala E, Genua M, Petti L, Anselmo A, Arena V, Cibella J, et al. Mesenchymal stem cells reduce colitis in mice via release of TSG6, independently of their localization to the intestine. Gastroenterology. 2015;149(1):163–76 e20. https://doi.org/10.1053/j.gastro.2015.03.013 Provides evidence that the therapeutic efficacy of MSCs in the treatment of colitis is independent of their homing properties, but is mediated by the release of soluble factors.

    Article  CAS  PubMed  Google Scholar 

  48. Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell. 2009;4(3):206–16. https://doi.org/10.1016/j.stem.2009.02.001.

    Article  CAS  PubMed  Google Scholar 

  49. Noiseux N, Gnecchi M, Lopez-Ilasaca M, Zhang L, Solomon SD, Deb A, et al. Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol. Ther. : the journal of the American Society of Gene Therapy. 2006;14(6):840–50. https://doi.org/10.1016/j.ymthe.2006.05.016.

    Article  CAS  PubMed  Google Scholar 

  50. Iso Y, Spees JL, Serrano C, Bakondi B, Pochampally R, Song YH, et al. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem Biophys Res Commun. 2007;354(3):700–6. https://doi.org/10.1016/j.bbrc.2007.01.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schuleri KH, Boyle AJ, Hare JM. Mesenchymal stem cells for cardiac regenerative therapy. Handb Exp Pharmacol. 2007;180:195–218. https://doi.org/10.1007/978-3-540-68976-8_9.

    Article  CAS  Google Scholar 

  52. Jung KH, Song SU, Yi T, Jeon MS, Hong SW, Zheng HM, et al. Human bone marrow-derived clonal mesenchymal stem cells inhibit inflammation and reduce acute pancreatitis in rats. Gastroenterology. 2011;140(3):998–1008. https://doi.org/10.1053/j.gastro.2010.11.047.

    Article  CAS  PubMed  Google Scholar 

  53. Haldar D, Henderson NC, Hirschfield G, Newsome PN. Mesenchymal stromal cells and liver fibrosis: a complicated relationship. FASEB J. : official publication of the Federation of American Societies for Experimental Biology. 2016;30(12):3905–28. https://doi.org/10.1096/fj.201600433R.

    Article  CAS  PubMed  Google Scholar 

  54. Ciccocioppo R, Dos Santos CC, Baumgart DC, Cangemi GC, Cardinale V, Ciacci C, et al. Proceedings of the signature series event of the international society for cellular therapy: “advancements in cellular therapies and regenerative medicine in digestive diseases,” London, United Kingdom, May 3, 2017. Cytotherapy. 2018;20(3):461–76. https://doi.org/10.1016/j.jcyt.2017.12.004.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Williams R, Alexander G, Aspinall R, Bosanquet J, Camps-Walsh G, Cramp M, et al. New metrics for the lancet standing commission on liver disease in the UK. Lancet. 2017;389(10083):2053–80. https://doi.org/10.1016/S0140-6736(16)32234-6.

    Article  PubMed  Google Scholar 

  56. Parola M, Pinzani M. Liver fibrosis: pathophysiology, pathogenetic targets and clinical issues. Mol Asp Med 2019;65:37–55. doi:https://doi.org/10.1016/j.mam.2018.09.002.

  57. Cao HJ, Wang MD, Li SG, Zhu L, Zheng JH. Paracrine effect of bone marrow mesenchymal stem cells on proliferation, apoptosis, and alpha-actin-2 expression in hepatic stellate cells. Genet. Mol. Res. 2017;16(1). https://doi.org/10.4238/gmr16019201.

  58. Parekkadan B, van Poll D, Megeed Z, Kobayashi N, Tilles AW, Berthiaume F, et al. Immunomodulation of activated hepatic stellate cells by mesenchymal stem cells. Biochem Biophys Res Commun. 2007;363(2):247–52. https://doi.org/10.1016/j.bbrc.2007.05.150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Najimi M, Berardis S, El-Kehdy H, Rosseels V, Evraerts J, Lombard C, et al. Human liver mesenchymal stem/progenitor cells inhibit hepatic stellate cell activation: in vitro and in vivo evaluation. Stem Cell Res Ther. 2017;8(1):131. https://doi.org/10.1186/s13287-017-0575-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fiore E, Malvicini M, Bayo J, Peixoto E, Atorrasagasti C, Sierra R, et al. Involvement of hepatic macrophages in the antifibrotic effect of IGF-I-overexpressing mesenchymal stromal cells. Stem Cell Res Ther. 2016;7(1):172. https://doi.org/10.1186/s13287-016-0424-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Maggini J, Mirkin G, Bognanni I, Holmberg J, Piazzon IM, Nepomnaschy I, et al. Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One. 2010;5(2):e9252. https://doi.org/10.1371/journal.pone.0009252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Theise ND, Nimmakayalu M, Gardner R, Illei PB, Morgan G, Teperman L, et al. Liver from bone marrow in humans. Hepatology. 2000;32(1):11–6. https://doi.org/10.1053/jhep.2000.9124.

    Article  CAS  PubMed  Google Scholar 

  63. Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Quinn G, et al. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology. 2007;46(1):219–28. https://doi.org/10.1002/hep.21704.

    Article  CAS  PubMed  Google Scholar 

  64. El Baz H, Demerdash Z, Kamel M, Atta S, Salah F, Hassan S, et al. Transplant of hepatocytes, undifferentiated mesenchymal stem cells, and in vitro hepatocyte-differentiated mesenchymal stem cells in a chronic liver failure experimental model: a comparative study. Exp. Clin. Transplant. : official journal of the Middle East Society for Organ Transplantation. 2018;16(1):81–9. https://doi.org/10.6002/ect.2016.0226.

    Article  PubMed  Google Scholar 

  65. Herrera MB, Bruno S, Buttiglieri S, Tetta C, Gatti S, Deregibus MC, et al. Isolation and characterization of a stem cell population from adult human liver. Stem Cells. 2006;24(12):2840–50. https://doi.org/10.1634/stemcells.2006-0114.

    Article  CAS  PubMed  Google Scholar 

  66. Mohamadnejad M, Alimoghaddam K, Mohyeddin-Bonab M, Bagheri M, Bashtar M, Ghanaati H, et al. Phase 1 trial of autologous bone marrow mesenchymal stem cell transplantation in patients with decompensated liver cirrhosis. Arch Iran Med. 2007;10(4):459–66.

    CAS  PubMed  Google Scholar 

  67. Peng L, Xie DY, Lin BL, Liu J, Zhu HP, Xie C, et al. Autologous bone marrow mesenchymal stem cell transplantation in liver failure patients caused by hepatitis B: short-term and long-term outcomes. Hepatology. 2011;54(3):820–8. https://doi.org/10.1002/hep.24434.

    Article  PubMed  Google Scholar 

  68. Amer ME, El-Sayed SZ, El-Kheir WA, Gabr H, Gomaa AA, El-Noomani N, et al. Clinical and laboratory evaluation of patients with end-stage liver cell failure injected with bone marrow-derived hepatocyte-like cells. Eur J Gastroenterol Hepatol. 2011;23(10):936–41. https://doi.org/10.1097/MEG.0b013e3283488b00.

    Article  PubMed  Google Scholar 

  69. Danese S, Fiocchi C. Ulcerative colitis. N Engl J Med. 2011;365(18):1713–25. https://doi.org/10.1056/NEJMra1102942.

    Article  CAS  PubMed  Google Scholar 

  70. Ko IK, Kim BG, Awadallah A, Mikulan J, Lin P, Letterio JJ, et al. Targeting improves MSC treatment of inflammatory bowel disease. Mol. Ther. : the journal of the American Society of Gene Therapy. 2010;18(7):1365–72. https://doi.org/10.1038/mt.2010.54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hayashi Y, Tsuji S, Tsujii M, Nishida T, Ishii S, Iijima H, et al. Topical implantation of mesenchymal stem cells has beneficial effects on healing of experimental colitis in rats. J Pharmacol Exp Ther. 2008;326(2):523–31. https://doi.org/10.1124/jpet.108.137083.

    Article  CAS  PubMed  Google Scholar 

  72. Duijvestein M, Vos AC, Roelofs H, Wildenberg ME, Wendrich BB, Verspaget HW, et al. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut. 2010;59(12):1662–9. https://doi.org/10.1136/gut.2010.215152.

    Article  PubMed  Google Scholar 

  73. Liang J, Zhang H, Wang D, Feng X, Wang H, Hua B, et al. Allogeneic mesenchymal stem cell transplantation in seven patients with refractory inflammatory bowel disease. Gut. 2012;61(3):468–9. https://doi.org/10.1136/gutjnl-2011-300083.

    Article  PubMed  Google Scholar 

  74. Mayer L, Pandak WM, Melmed GY, Hanauer SB, Johnson K, Payne D, et al. Safety and tolerability of human placenta-derived cells (PDA001) in treatment-resistant Crohn’s disease: a phase 1 study. Inflamm Bowel Dis. 2013;19(4):754–60. https://doi.org/10.1097/MIB.0b013e31827f27df.

    Article  PubMed  Google Scholar 

  75. Melmed GY, Pandak WM, Casey K, Abraham B, Valentine J, Schwartz D, et al. Human placenta-derived cells (PDA-001) for the treatment of moderate-to-severe Crohn’s disease: a phase 1b/2a study. Inflamm Bowel Dis. 2015;21(8):1809–16. https://doi.org/10.1097/MIB.0000000000000441.

    Article  PubMed  Google Scholar 

  76. Forbes GM, Sturm MJ, Leong RW, Sparrow MP, Segarajasingam D, Cummins AG, et al. A phase 2 study of allogeneic mesenchymal stromal cells for luminal Crohn’s disease refractory to biologic therapy. Clin Gastroenterol Hepatol. 2014;12(1):64–71. https://doi.org/10.1016/j.cgh.2013.06.021.

    Article  PubMed  Google Scholar 

  77. Zhang J, Lv S, Liu X, Song B, Shi L. Umbilical cord mesenchymal stem cell treatment for Crohn’s disease: a randomized controlled clinical trial. Gut and liver. 2018;12(1):73–8. https://doi.org/10.5009/gnl17035.

    Article  CAS  PubMed  Google Scholar 

  78. Dhere T, Copland I, Garcia M, Chiang KY, Chinnadurai R, Prasad M, et al. The safety of autologous and metabolically fit bone marrow mesenchymal stromal cells in medically refractory Crohn’s disease - a phase 1 trial with three doses. Aliment Pharmacol Ther. 2016;44(5):471–81. https://doi.org/10.1111/apt.13717.

    Article  CAS  PubMed  Google Scholar 

  79. Panes J, Rimola J. Perianal fistulizing Crohn’s disease: pathogenesis, diagnosis and therapy. Nat Rev Gastroenterol Hepatol. 2017;14(11):652–64. https://doi.org/10.1038/nrgastro.2017.104.

    Article  PubMed  Google Scholar 

  80. Makowiec F, Jehle EC, Starlinger M. Clinical course of perianal fistulas in Crohn’s disease. Gut. 1995;37(5):696–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Panes J, Garcia-Olmo D, Van Assche G, Colombel JF, Reinisch W, Baumgart DC, et al. Long-term efficacy and safety of stem cell therapy (Cx601) for complex perianal fistulas in patients with Crohn’s disease. Gastroenterology. 2018;154(5):1334–42 e4. https://doi.org/10.1053/j.gastro.2017.12.020.

    Article  PubMed  Google Scholar 

  82. Galleu A, Riffo-Vasquez Y, Trento C, Lomas C, Dolcetti L, Cheung TS, et al. Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci Transl Med. 2017;9(416). https://doi.org/10.1126/scitranslmed.aam7828.

  83. Garcia-Olmo D, Herreros D, Pascual I, Pascual JA, Del-Valle E, Zorrilla J, et al. Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum. 2009;52(1):79–86. https://doi.org/10.1007/DCR.0b013e3181973487.

    Article  PubMed  Google Scholar 

  84. Ciccocioppo R, Bernardo ME, Sgarella A, Maccario R, Avanzini MA, Ubezio C, et al. Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn’s disease. Gut. 2011;60(6):788–98. https://doi.org/10.1136/gut.2010.214841.

    Article  PubMed  Google Scholar 

  85. Mannon PJ. Remestemcel-L: human mesenchymal stem cells as an emerging therapy for Crohn’s disease. Expert Opin Biol Ther. 2011;11(9):1249–56. https://doi.org/10.1517/14712598.2011.602967.

    Article  CAS  PubMed  Google Scholar 

  86. Cho YB, Park KJ, Yoon SN, Song KH, Kim DS, Jung SH, et al. Long-term results of adipose-derived stem cell therapy for the treatment of Crohn’s fistula. Stem Cells Transl Med. 2015;4(5):532–7. https://doi.org/10.5966/sctm.2014-0199.

    Article  PubMed  PubMed Central  Google Scholar 

  87. de la Portilla F, Alba F, Garcia-Olmo D, Herrerias JM, Gonzalez FX, Galindo A. Expanded allogeneic adipose-derived stem cells (eASCs) for the treatment of complex perianal fistula in Crohn’s disease: results from a multicenter phase I/IIa clinical trial. Int J Color Dis. 2013;28(3):313–23. https://doi.org/10.1007/s00384-012-1581-9.

    Article  Google Scholar 

  88. Ciccocioppo R, Gallia A, Sgarella A, Kruzliak P, Gobbi PG, Corazza GR. Long-term follow-up of Crohn disease fistulas after local injections of bone marrow-derived mesenchymal stem cells. Mayo Clin Proc. 2015;90(6):747–55. https://doi.org/10.1016/j.mayocp.2015.03.023.

    Article  PubMed  Google Scholar 

  89. Garcia-Olmo D, Schwartz DA. Cumulative evidence that mesenchymal stem cells promote healing of perianal fistulas of patients with Crohn’s disease--going from bench to bedside. Gastroenterology. 2015;149(4):853–7. https://doi.org/10.1053/j.gastro.2015.08.038.

    Article  PubMed  Google Scholar 

  90. Molendijk I, Bonsing BA, Roelofs H, Peeters KC, Wasser MN, Dijkstra G, et al. Allogeneic bone marrow-derived mesenchymal stromal cells promote healing of refractory perianal fistulas in patients with Crohn’s disease. Gastroenterology. 2015;149(4):918–27 e6. https://doi.org/10.1053/j.gastro.2015.06.014.

    Article  PubMed  Google Scholar 

  91. Panes J, Garcia-Olmo D, Van Assche G, Colombel JF, Reinisch W, Baumgart DC, et al. Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn’s disease: a phase 3 randomised, double-blind controlled trial. Lancet. 2016;388(10051):1281–90. https://doi.org/10.1016/S0140-6736(16)31203-X.

    Article  PubMed  Google Scholar 

  92. Dietz AB, Dozois EJ, Fletcher JG, Butler GW, Radel D, Lightner AL, et al. Autologous mesenchymal stem cells, applied in a bioabsorbable matrix, for treatment of perianal fistulas in patients with Crohn’s disease. Gastroenterology. 2017;153(1):59–62 e2. https://doi.org/10.1053/j.gastro.2017.04.001.

    Article  CAS  PubMed  Google Scholar 

  93. Garcia-Olmo D, Garcia-Arranz M, Herreros D, Pascual I, Peiro C, Rodriguez-Montes JA. A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum. 2005;48(7):1416–23. https://doi.org/10.1007/s10350-005-0052-6.

    Article  PubMed  Google Scholar 

  94. Garcia-Olmo D, Herreros D, Pascual M, Pascual I, De-La-Quintana P, Trebol J, et al. Treatment of enterocutaneous fistula in Crohn’s disease with adipose-derived stem cells: a comparison of protocols with and without cell expansion. Int J Color Dis. 2009;24(1):27–30. https://doi.org/10.1007/s00384-008-0559-0.

    Article  Google Scholar 

  95. Guadalajara H, Herreros D, De-La-Quintana P, Trebol J, Garcia-Arranz M, Garcia-Olmo D. Long-term follow-up of patients undergoing adipose-derived adult stem cell administration to treat complex perianal fistulas. Int J Color Dis. 2012;27(5):595–600. https://doi.org/10.1007/s00384-011-1350-1.

    Article  Google Scholar 

  96. Baumgart DC, Sandborn WJ. Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet. 2007;369(9573):1641–57. https://doi.org/10.1016/S0140-6736(07)60751-X.

    Article  CAS  PubMed  Google Scholar 

  97. Feagan BG, Chande N, MacDonald JK. Are there any differences in the efficacy and safety of different formulations of Oral 5-ASA used for induction and maintenance of remission in ulcerative colitis? Evidence from cochrane reviews. Inflamm Bowel Dis. 2013;19(9):2031–40. https://doi.org/10.1097/MIB.0b013e3182920108.

    Article  PubMed  Google Scholar 

  98. Panaccione R, Ghosh S, Middleton S, Marquez JR, Scott BB, Flint L, et al. Combination therapy with infliximab and azathioprine is superior to monotherapy with either agent in ulcerative colitis. Gastroenterology. 2014;146(2):392–400 e3. https://doi.org/10.1053/j.gastro.2013.10.052.

    Article  CAS  PubMed  Google Scholar 

  99. Jarnerot G, Hertervig E, Friis-Liby I, Blomquist L, Karlen P, Granno C, et al. Infliximab as rescue therapy in severe to moderately severe ulcerative colitis: a randomized, placebo-controlled study. Gastroenterology. 2005;128(7):1805–11.

    Article  PubMed  Google Scholar 

  100. Rutgeerts P, Sandborn WJ, Feagan BG, Reinisch W, Olson A, Johanns J, et al. Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2005;353(23):2462–76. https://doi.org/10.1056/NEJMoa050516.

    Article  CAS  PubMed  Google Scholar 

  101. Reinisch W, Sandborn WJ, Hommes DW, D'Haens G, Hanauer S, Schreiber S, et al. Adalimumab for induction of clinical remission in moderately to severely active ulcerative colitis: results of a randomised controlled trial. Gut. 2011;60(6):780–7. https://doi.org/10.1136/gut.2010.221127.

    Article  CAS  PubMed  Google Scholar 

  102. Sandborn WJ, Feagan BG, Marano C, Zhang H, Strauss R, Johanns J, et al. Subcutaneous golimumab induces clinical response and remission in patients with moderate-to-severe ulcerative colitis. Gastroenterology. 2014;146(1):85–95; quiz e14-5. https://doi.org/10.1053/j.gastro.2013.05.048.

    Article  CAS  PubMed  Google Scholar 

  103. Feagan BG, Rutgeerts P, Sands BE, Hanauer S, Colombel JF, Sandborn WJ, et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2013;369(8):699–710. https://doi.org/10.1056/NEJMoa1215734.

    Article  CAS  PubMed  Google Scholar 

  104. Hu J, Zhao G, Zhang L, Qiao C, Di A, Gao H, et al. Safety and therapeutic effect of mesenchymal stem cell infusion on moderate to severe ulcerative colitis. Exp Ther Med. 2016;12(5):2983–9. https://doi.org/10.3892/etm.2016.3724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Singh P, Arora A, Strand TA, Leffler DA, Catassi C, Green PH, et al. Global prevalence of celiac disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2018;16(6):823–36 e2. https://doi.org/10.1016/j.cgh.2017.06.037.

    Article  PubMed  Google Scholar 

  106. • Lebwohl B, Sanders DS, Green PHR. Coeliac disease. Lancet. 2018;391(10115):70–81. https://doi.org/10.1016/S0140-6736(17)31796-8 This study reports the first in vivo evidence of MSCs as a new approach to treat severe treatment-resistant grade IV acute graft-versus-host disease of the gut and liver.

    Article  PubMed  Google Scholar 

  107. Van De Kamer JH, Weijers HA, Dicke WK. Coeliac disease. IV. An investigation into the injurious constituents of wheat in connection with their action on patients with coeliac disease. Acta Paediatr. 1953;42(3):223–31.

    Article  Google Scholar 

  108. Lee AR, Ng DL, Diamond B, Ciaccio EJ, Green PH. Living with coeliac disease: survey results from the U.S.A. J Hum Nutr Diet : the official journal of the British Dietetic Association. 2012;25(3):233–8. https://doi.org/10.1111/j.1365-277X.2012.01236.x.

    Article  CAS  PubMed  Google Scholar 

  109. Kaukinen K, Lindfors K, Maki M. Advances in the treatment of coeliac disease: an immunopathogenic perspective. Nat Rev Gastroenterol Hepatol. 2014;11(1):36–44. https://doi.org/10.1038/nrgastro.2013.141.

    Article  CAS  PubMed  Google Scholar 

  110. Yabana T, Arimura Y, Tanaka H, Goto A, Hosokawa M, Nagaishi K, et al. Enhancing epithelial engraftment of rat mesenchymal stem cells restores epithelial barrier integrity. J Pathol. 2009;218(3):350–9. https://doi.org/10.1002/path.2535.

    Article  CAS  PubMed  Google Scholar 

  111. Semont A, Mouiseddine M, Francois A, Demarquay C, Mathieu N, Chapel A, et al. Mesenchymal stem cells improve small intestinal integrity through regulation of endogenous epithelial cell homeostasis. Cell Death Differ. 2010;17(6):952–61. https://doi.org/10.1038/cdd.2009.187.

    Article  CAS  PubMed  Google Scholar 

  112. Tayman C, Uckan D, Kilic E, Ulus AT, Tonbul A, Murat Hirfanoglu I, et al. Mesenchymal stem cell therapy in necrotizing enterocolitis: a rat study. Pediatr Res. 2011;70(5):489–94. https://doi.org/10.1203/PDR.0b013e31822d7ef2.

    Article  PubMed  Google Scholar 

  113. Ciccocioppo R, Di Sabatino A, Parroni R, Muzi P, D'Alo S, Ventura T, et al. Increased enterocyte apoptosis and Fas-Fas ligand system in celiac disease. Am J Clin Pathol. 2001;115(4):494–503. https://doi.org/10.1309/UV54-BHP3-A66B-0QUD.

    Article  CAS  PubMed  Google Scholar 

  114. Ciccocioppo R, Camarca A, Cangemi GC, Radano G, Vitale S, Betti E, et al. Tolerogenic effect of mesenchymal stromal cells on gliadin-specific T lymphocytes in celiac disease. Cytotherapy. 2014;16(8):1080–91. https://doi.org/10.1016/j.jcyt.2014.03.002.

    Article  CAS  PubMed  Google Scholar 

  115. Ciccocioppo R, Gallia A, Avanzini MA, Betti E, Picone C, Vanoli A, et al. A refractory celiac patient successfully treated with mesenchymal stem cell infusions. Mayo Clin Proc. 2016;91(6):812–9. https://doi.org/10.1016/j.mayocp.2016.03.001.

    Article  PubMed  Google Scholar 

  116. Ciccocioppo R, Russo ML, Bernardo ME, Biagi F, Catenacci L, Avanzini MA, et al. Mesenchymal stromal cell infusions as rescue therapy for corticosteroid-refractory adult autoimmune enteropathy. Mayo Clin Proc. 2012;87(9):909–14. https://doi.org/10.1016/j.mayocp.2012.04.014.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Corazza GR, Biagi F, Volta U, Andreani ML, De Franceschi L, Gasbarrini G. Autoimmune enteropathy and villous atrophy in adults. Lancet. 1997;350(9071):106–9. https://doi.org/10.1016/S0140-6736(97)01042-8.

    Article  CAS  PubMed  Google Scholar 

  118. Naymagon S, Naymagon L, Wong SY, Ko HM, Renteria A, Levine J, et al. Acute graft-versus-host disease of the gut: considerations for the gastroenterologist. Nat Rev Gastroenterol Hepatol. 2017;14(12):711–26. https://doi.org/10.1038/nrgastro.2017.126.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Hill GR, Ferrara JL. The primacy of the gastrointestinal tract as a target organ of acute graft-versus-host disease: rationale for the use of cytokine shields in allogeneic bone marrow transplantation. Blood. 2000;95(9):2754–9.

    CAS  PubMed  Google Scholar 

  120. Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004;363(9419):1439–41. https://doi.org/10.1016/S0140-6736(04)16104-7.

    Article  PubMed  Google Scholar 

  121. Locatelli F, Algeri M, Trevisan V, Bertaina A. Remestemcel-L for the treatment of graft versus host disease. Expert Rev Clin Immunol. 2017;13(1):43–56. https://doi.org/10.1080/1744666X.2016.1208086.

    Article  CAS  PubMed  Google Scholar 

  122. Bernardo ME, Fibbe WE. Mesenchymal stromal cells and hematopoietic stem cell transplantation. Immunol Lett. 2015;168(2):215–21. https://doi.org/10.1016/j.imlet.2015.06.013.

    Article  CAS  PubMed  Google Scholar 

  123. Kurtzberg J, Prockop S, Teira P, Bittencourt H, Lewis V, Chan KW et al. Allogeneic human mesenchymal stem cell therapy (remestemcel-L, Prochymal) as a rescue agent for severe refractory acute graft-versus-host disease in pediatric patients. Clin Gastroenterol Hepatol. 2014;20(2):229–235. doi:https://doi.org/10.1016/j.bbmt.2013.11.001.

Download references

Funding

The manuscript was supported by a grant from Ministero della Salute (GR -2009 Convenzione 76) to SV; My First AIRC Grant (MFAG 2015-17795) to SV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Vetrano.

Ethics declarations

Conflict of Interest

Rachele Ciccocioppo received a consulting (honorary) fee by Takeda Pharmaceutical Company Limited (USA). Ana Lleo has served as a speaker for Abbvie, BMS, Gilead, and Intercept. Barbara Romano, Emanuela Sala, Giovanna D’Amico, Domenica Ida Marino and Stefania Vetrano have no conflicts of interest to declare.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cellular Transplants

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romano, B., Lleo, A., Sala, E. et al. Mesenchymal Stem Cells to Treat Digestive System Disorders: Progress Made and Future Directions. Curr Transpl Rep 6, 134–145 (2019). https://doi.org/10.1007/s40472-019-00238-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40472-019-00238-1

Keywords

Navigation