Skip to main content

Advertisement

Log in

Novel Nanoimaging Strategies for Noninvasive Graft Monitoring in Vascularized Composite Allotransplantation

  • Invited Commentary
  • Published:
Current Transplantation Reports Aims and scope Submit manuscript

Abstract

This article focuses on the unmet needs and key challenges in vascularized composite allotransplantation (VCA) and the opportunities for current nanotechnology advances in therapeutics and diagnostics for personalized treatment and optimization of clinical outcomes. The transformative role of nanoimaging as a noninvasive tool in the longitudinal surveillance of acute and chronic rejection after VCA is critically reviewed. Nanoimaging can inform management decisions and guide continuous treatment adjustments over time in patients to improve safety and efficacy in VCA. Nanoimaging signatures can be unbiased and quantitative measures of treatment effectiveness as well as medication adherence, both of which are critical prerequisites for overall graft survival and patient quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gorantla VS, Demetris AJ. Acute and chronic rejection in upper extremity transplantation: what have we learned? Hand Clin. 2011;27(4):481–93 ix.

    Article  Google Scholar 

  2. Lakkis FG, Billiar TR. Molecular analysis of transplant rejection: marching onward. J Exp Med. 2013;210(11):2147–9.

    Article  CAS  Google Scholar 

  3. Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev. 2017;108:25–38.

    Article  CAS  Google Scholar 

  4. Tasciotti E, Cabrera FJ, Evangelopoulos M, Martinez JO, Thekkedath UR, Kloc M, et al. The emerging role of nanotechnology in cell and organ transplantation. Transplantation. 2016;100(8):1629–38.

    Article  CAS  Google Scholar 

  5. Stingl G, Katz SI, Green I, Shevach EM. The functional role of Langerhans cells. J Invest Dermatol. 1980;74(5):315–8.

    Article  CAS  Google Scholar 

  6. Azuma H, Tilney NL. Chronic graft rejection. Curr Opin Immunol. 1994;6(5):770–6.

    Article  CAS  Google Scholar 

  7. Marzano AV, Cugno M, Trevisan V, Fanoni D, Venegoni L, Berti E, et al. Role of inflammatory cells, cytokines and matrix metalloproteinases in neutrophil-mediated skin diseases. Clin Exp Immunol. 2010;162(1):100–7.

    Article  CAS  Google Scholar 

  8. Foss CA, Sanchez-Bautista J, Jain SK. Imaging macrophage-associated inflammation. Semin Nucl Med. 2018;48(3):242–5.

    Article  Google Scholar 

  9. Gustafsson B, Youens S, Louie AY. Development of contrast agents targeted to macrophage scavenger receptors for MRI of vascular inflammation. Bioconjug Chem. 2006;17(2):538–47.

    Article  CAS  Google Scholar 

  10. Hitchens TK, Ye Q, Eytan DF, Janjic JM, Ahrens ET, Ho C. 19F MRI detection of acute allograft rejection with in vivo perfluorocarbon labeling of immune cells. Magn Reson Med. 2011;65(4):1144–53.

    Article  Google Scholar 

  11. Rausch M, Hiestand P, Baumann D, Cannet C, Rudin M. MRI-based monitoring of inflammation and tissue damage in acute and chronic relapsing EAE. Magn Reson Med. 2003;50(2):309–14.

    Article  CAS  Google Scholar 

  12. Riou A, Chauveau F, Cho TH, Marinescu M, Nataf S, Nighoghossian N, et al. MRI assessment of the intra-carotid route for macrophage delivery after transient cerebral ischemia. NMR Biomed. 2013;26(2):115–23.

    Article  CAS  Google Scholar 

  13. Weise G, Basse-Luesebrink TC, Wessig C, Jakob PM, Stoll G. In vivo imaging of inflammation in the peripheral nervous system by (19)F MRI. Exp Neurol. 2011;229(2):494–501.

    Article  CAS  Google Scholar 

  14. O’Neill AS, Terry SY, Brown K, Meader L, Wong AM, Cooper JD, et al. Non-invasive molecular imaging of inflammatory macrophages in allograft rejection. EJNMMI Res. 2015;5(1):69.

    Article  Google Scholar 

  15. Wu YL, Ye Q, Eytan DF, Liu L, Rosario BL, Hitchens TK, et al. Magnetic resonance imaging investigation of macrophages in acute cardiac allograft rejection after heart transplantation. Circ Cardiovasc Imaging. 2013;6(6):965–73.

    Article  Google Scholar 

  16. Ye Q, Wu YL, Foley LM, Hitchens TK, Eytan DF, Shirwan H, et al. Longitudinal tracking of recipient macrophages in a rat chronic cardiac allograft rejection model with noninvasive magnetic resonance imaging using micrometer-sized paramagnetic iron oxide particles. Circulation. 2008;118(2):149–56.

    Article  Google Scholar 

  17. Janjic JM, Srinivas M, Kadayakkara DK, Ahrens ET. Self-delivering nanoemulsions for dual fluorine-19 MRI and fluorescence detection. J Am Chem Soc. 2008;130(9):2832–41.

    Article  CAS  Google Scholar 

  18. Srinivas M, Heerschap A, Ahrens ET, Figdor CG, de Vries IJ. 19F MRI for quantitative in vivo cell tracking. Trends Biotechnol. 2010;28(7):363–70.

    Article  CAS  Google Scholar 

  19. Srinivas M, Morel PA, Ernst LA, Laidlaw DH, Ahrens ET. Fluorine-19 MRI for visualization and quantification of cell migration in a diabetes model. Magn Reson Med. 2007;58(4):725–34.

    Article  CAS  Google Scholar 

  20. Srinivas M, Turner MS, Janjic JM, Morel PA, Laidlaw DH, Ahrens ET. In vivo cytometry of antigen-specific t cells using 19F MRI. Magn Reson Med. 2009;62(3):747–53.

    Article  CAS  Google Scholar 

  21. Chapelin F, Capitini CM, Ahrens ET. Fluorine-19 MRI for detection and quantification of immune cell therapy for cancer. J Immunother Cancer. 2018;6(1):105.

    Article  Google Scholar 

  22. Stoll G, Basse-Lusebrink T, Weise G, Jakob P. Visualization of inflammation using (19) F-magnetic resonance imaging and perfluorocarbons. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4(4):438–47.

    Article  CAS  Google Scholar 

  23. Balducci A, Wen Y, Zhang Y, Helfer BM, Hitchens TK, Meng WS, et al. A novel probe for the non-invasive detection of tumor-associated inflammation. Oncoimmunology. 2013;2(2):e23034.

    Article  Google Scholar 

  24. Kadayakkara DK, Beatty PL, Turner MS, Janjic JM, Ahrens ET, Finn OJ. Inflammation driven by overexpression of the hypoglycosylated abnormal mucin 1 (MUC1) links inflammatory bowel disease and pancreatitis. Pancreas. 2010;39(4):510–5.

    Article  CAS  Google Scholar 

  25. Balducci A, Helfer BM, Ahrens ET, O’Hanlon CF 3rd, Wesa AK. Visualizing arthritic inflammation and therapeutic response by fluorine-19 magnetic resonance imaging (19F MRI). J Inflamm (Lond). 2012;9(1):24.

    Article  CAS  Google Scholar 

  26. Zhong J, Narsinh K, Morel PA, Xu H, Ahrens ET. In vivo quantification of inflammation in experimental autoimmune encephalomyelitis rats using fluorine-19 magnetic resonance imaging reveals immune cell recruitment outside the nervous system. PLoS One. 2015;10(10):e0140238.

    Article  Google Scholar 

  27. Ahrens ET, Bulte JW. Tracking immune cells in vivo using magnetic resonance imaging. Nat Rev Immunol. 2013;13(10):755–63.

    Article  CAS  Google Scholar 

  28. Ahrens ET, Zhong J. In vivo MRI cell tracking using perfluorocarbon probes and fluorine-19 detection. NMR Biomed. 2013;26(7):860–71.

    Article  CAS  Google Scholar 

  29. Janjic JM, Ahrens ET. Fluorine-containing nanoemulsions for MRI cell tracking. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(5):492–501.

    Article  CAS  Google Scholar 

  30. Kadayakkara DK, Ranganathan S, Young WB, Ahrens ET. Assaying macrophage activity in a murine model of inflammatory bowel disease using fluorine-19 MRI. Lab Investig. 2012;92(4):636–45.

    Article  CAS  Google Scholar 

  31. Jacoby C, Temme S, Mayenfels F, Benoit N, Krafft MP, Schubert R, et al. Probing different perfluorocarbons for in vivo inflammation imaging by 19F MRI: image reconstruction, biological half-lives and sensitivity. NMR Biomed. 2014;27(3):261–71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay S. Gorantla.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Authors contributed equally and Jelena M. Janjic is co-corresponding author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janjic, J.M., Gorantla, V.S. Novel Nanoimaging Strategies for Noninvasive Graft Monitoring in Vascularized Composite Allotransplantation. Curr Transpl Rep 5, 369–372 (2018). https://doi.org/10.1007/s40472-018-0221-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40472-018-0221-x

Keywords

Navigation