Skip to main content

Advertisement

Log in

Air Pollution and Cardiovascular Disease: a Focus on Vulnerable Populations Worldwide

  • Cardiovascular Disease (R Foraker, Section Editor)
  • Published:
Current Epidemiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Certain subgroups defined by sociodemographics (race/ethnicity, age, sex, and socioeconomic status [SES]), geographic location (rural vs. urban), comorbid conditions, and country economic conditions (developed vs. developing) may disproportionately suffer the adverse cardiovascular effects of exposure to ambient air pollution. Yet, previous reviews have had a broad focus on the general population without consideration of these potentially vulnerable populations.

Recent Findings

Over the past decade, a wealth of epidemiologic studies have linked air pollutants including particulate matter, oxides of nitrogen, and carbon monoxide to cardiovascular disease (CVD) risk factors, subclinical CVD, clinical cardiovascular outcomes, and cardiovascular mortality in certain susceptible populations. Highest risk for poor CVD outcomes from air pollution exists in racial/ethnic minorities, especially in blacks compared to whites in the US, those at low SES, elderly populations, women, those with certain comorbid conditions, and developing countries compared to developed countries. However, findings are less consistent for urban compared to rural populations.

Summary

Vulnerable subgroups including racial/ethnic minorities, women, the elderly, smokers, diabetics, and those with prior heart disease had higher risk for adverse cardiovascular outcomes from exposure to air pollution. There is limited data from developing countries where concentrations of air pollutants are more extreme and cardiovascular event rates are higher than that of developed countries. Further epidemiologic studies are needed to understand and address the marked disparities in CVD risk conferred by air pollution globally, particularly among these vulnerable subgroups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1659–724.

  2. Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R, Basu NN, et al. The Lancet Commission on pollution and health. Lancet. 2018;391(10119):462–512.

    PubMed  Google Scholar 

  3. World Health Organization. Health topics: air pollution. http://www.who.int/airpollution/guidelines/en/. Accessed 06/28 2018.

  4. Huang YT, Brook RD. The clean air act: science, policy, and politics. Chest. 2011;140(1):1–2.

    PubMed  Google Scholar 

  5. Chen H, Goldberg MS, Villeneuve PJ. A systematic review of the relation between long-term exposure to ambient air pollution and chronic diseases. Rev Environ Health. 2008;23(4):243–97.

    CAS  PubMed  Google Scholar 

  6. Brook RD, Newby DE, Rajagopalan S. Air pollution and cardiometabolic disease: an update and call for clinical trials. Am J Hypertens. 2017;31(1):1–10.

    PubMed  Google Scholar 

  7. Newman JD, Thurston GD, Cromar K, Guo Y, Rockman CB, Fisher EA, et al. Particulate air pollution and carotid artery stenosis. J Am Coll Cardiol. 2015;65(11):1150–1.

    PubMed  PubMed Central  Google Scholar 

  8. Leary PJ, Kaufman JD, Barr RG, Bluemke DA, Curl CL, Hough CL, et al. Traffic-related air pollution and the right ventricle. The multi-ethnic study of atherosclerosis. Am J Respir Crit Care Med. 2014;189(9):1093–100.

    PubMed  PubMed Central  Google Scholar 

  9. •• Hajat A, Allison M, Diez-Roux AV, Jenny NS, Jorgensen NW, Szpiro AA, et al. Long-term exposure to air pollution and markers of inflammation, coagulation, and endothelial activation: a repeat-measures analysis in the multi-ethnic study of atherosclerosis (MESA). Epidemiology. 2015;26(3):310–20 A large, multi-ethnic and prospective study of long-term exposure to air pollution and markers of inflammation, coagulation, and endothelial activation. Each 5 μg/m 3 increase in long-term PM 2.5 was associated with a 6% increase in IL-6. Each 40 ppb increase in long-term NO x was associated with 7% increase in D-dimer.

    PubMed  PubMed Central  Google Scholar 

  10. •• Kaufman JD, Adar SD, Barr RG, Budoff M, Burke GL, Curl CL, et al. Association between air pollution and coronary artery calcification within six metropolitan areas in the USA (the multi-ethnic study of atherosclerosis and air pollution): a longitudinal cohort study. Lancet. 2016;388(10045):696–704 The largest and longest study linking long-term air pollution and traffic exposure to atherosclerosis. In this study, each 5 μg/m 3 increase in long-term PM 2.5 was associated with a 4.1 Agatston units/year increase in CAC.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation. 2010;121(21):2331–78.

    CAS  PubMed  Google Scholar 

  12. • Tibuakuu M, Jones MR, Navas-Acien A, Zhao D, Guallar E, Gassett AJ, et al. Exposure to ambient air pollution and calcification of the mitral annulus and aortic valve: the multi-ethnic study of atherosclerosis (MESA). Environ Health. 2017;16(1):133 First longitudinal study to examine ambient air pollution with valvular calcification (AVC and MAC). There was evidence of increased 2.5-year progression of MAC with exposure to ambient PM 2.5.

    PubMed  PubMed Central  Google Scholar 

  13. Mehta AJ, Zanobetti A, Koutrakis P, Mittleman MA, Sparrow D, Vokonas P, et al. Associations between short-term changes in air pollution and correlates of arterial stiffness: the veterans affairs normative aging study, 2007-2011. Am J Epidemiol. 2014;179(2):192–9.

    PubMed  Google Scholar 

  14. Li W, Dorans KS, Wilker EH, Rice MB, Ljungman PL, Schwartz JD, et al. Short-term exposure to ambient air pollution and biomarkers of systemic inflammation: the Framingham heart study. Arterioscler Thromb Vasc Biol. 2017;37(9):1793–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Newby DE, Mannucci PM, Tell GS, Baccarelli AA, Brook RD, Donaldson K, et al. Expert position paper on air pollution and cardiovascular disease. Eur Heart J. 2015;36(2):83–93b.

    CAS  PubMed  Google Scholar 

  16. Mustafic H, Jabre P, Caussin C, Murad MH, Escolano S, Tafflet M, et al. Main air pollutants and myocardial infarction: a systematic review and meta-analysis. JAMA. 2012;307(7):713–21.

    CAS  PubMed  Google Scholar 

  17. Shah AS, Langrish JP, Nair H, McAllister DA, Hunter AL, Donaldson K, et al. Global association of air pollution and heart failure: a systematic review and meta-analysis. Lancet. 2013;382(9897):1039–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Shah AS, Lee KK, McAllister DA, Hunter A, Nair H, Whiteley W, et al. Short term exposure to air pollution and stroke: systematic review and meta-analysis. BMJ. 2015;350:h1295.

    PubMed  PubMed Central  Google Scholar 

  19. Song X, Liu Y, Hu Y, Zhao X, Tian J, Ding G, et al. Short-term exposure to air pollution and cardiac arrhythmia: a meta-analysis and systematic review. Int J Environ Res Public Health. 2016;13(7). https://doi.org/10.3390/ijerph13070642.

  20. •• Cesaroni G, Forastiere F, Stafoggia M, Andersen ZJ, Badaloni C, Beelen R, et al. Long term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE project. BMJ. 2014;348:f7412 This analysis was derived from a pooling of 11 cohorts ( n= 100,166) from Europe. Each 5 μg/m 3 increase in long-term PM 2.5 was associated with a 13% increase in nonfatal acute coronary events.

    PubMed  PubMed Central  Google Scholar 

  21. Stafoggia M, Cesaroni G, Peters A, Andersen ZJ, Badaloni C, Beelen R, et al. Long-term exposure to ambient air pollution and incidence of cerebrovascular events: results from 11 European cohorts within the ESCAPE project. Environ Health Perspect. 2014;122(9):919–25.

    PubMed  PubMed Central  Google Scholar 

  22. Wolf K, Stafoggia M, Cesaroni G, Andersen ZJ, Beelen R, Galassi C, et al. Long-term exposure to particulate matter constituents and the incidence of coronary events in 11 European cohorts. Epidemiology. 2015;26(4):565–74.

    PubMed  Google Scholar 

  23. McGuinn LA, Ward-Caviness CK, Neas LM, Schneider A, Diaz-Sanchez D, Cascio WE, et al. Association between satellite-based estimates of long-term PM2.5 exposure and coronary artery disease. Environ Res. 2016;145:9–17.

    CAS  PubMed  Google Scholar 

  24. Weichenthal S, Lavigne E, Evans G, Pollitt K, Burnett RT. Ambient PM2.5 and risk of emergency room visits for myocardial infarction: impact of regional PM2.5 oxidative potential: a case-crossover study. Environ Health. 2016;15:46.

    PubMed  PubMed Central  Google Scholar 

  25. Wang X, Kindzierski W, Kaul P. Comparison of transient associations of air pollution and AMI hospitalisation in two cities of Alberta, Canada, using a case-crossover design. BMJ Open. 2015;5(11):e009169.

    PubMed  PubMed Central  Google Scholar 

  26. Wellenius GA, Burger MR, Coull BA, Schwartz J, Suh HH, Koutrakis P, et al. Ambient air pollution and the risk of acute ischemic stroke. Arch Intern Med. 2012;172(3):229–34.

    PubMed  PubMed Central  Google Scholar 

  27. Milojevic A, Wilkinson P, Armstrong B, Bhaskaran K, Smeeth L, Hajat S. Short-term effects of air pollution on a range of cardiovascular events in England and Wales: case-crossover analysis of the MINAP database, hospital admissions and mortality. Heart. 2014;100(14):1093–8.

    PubMed  PubMed Central  Google Scholar 

  28. Tonne C, Halonen JI, Beevers SD, Dajnak D, Gulliver J, Kelly FJ, et al. Long-term traffic air and noise pollution in relation to mortality and hospital readmission among myocardial infarction survivors. Int J Hyg Environ Health. 2016;219(1):72–8.

    PubMed  Google Scholar 

  29. Tonne C, Wilkinson P. Long-term exposure to air pollution is associated with survival following acute coronary syndrome. Eur Heart J. 2013;34(17):1306–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen H, Burnett RT, Copes R, Kwong JC, Villeneuve PJ, Goldberg MS, et al. Ambient fine particulate matter and mortality among survivors of myocardial infarction: population-based cohort study. Environ Health Perspect. 2016;124(9):1421–8.

    PubMed  PubMed Central  Google Scholar 

  31. Pinault L, Tjepkema M, Crouse DL, Weichenthal S, van Donkelaar A, Martin RV, et al. Risk estimates of mortality attributed to low concentrations of ambient fine particulate matter in the Canadian community health survey cohort. Environ Health. 2016;15:18.

    PubMed  PubMed Central  Google Scholar 

  32. Crouse DL, Peters PA, Villeneuve PJ, Proux MO, Shin HH, Goldberg MS, et al. Within- and between-city contrasts in nitrogen dioxide and mortality in 10 Canadian cities; a subset of the Canadian census health and environment cohort (CanCHEC). J Expo Sci Environ Epidemiol. 2015;25(5):482–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Weichenthal S, Pinault LL, Burnett RT. Impact of oxidant gases on the relationship between outdoor fine particulate air pollution and nonaccidental, cardiovascular, and respiratory mortality. Sci Rep. 2017;7(1):16401.

    PubMed  PubMed Central  Google Scholar 

  34. Thurston GD, Burnett RT, Turner MC, Shi Y, Krewski D, Lall R, et al. Ischemic heart disease mortality and long-term exposure to source-related components of U.S. fine particle air pollution. Environ Health Perspect. 2016;124(6):785–94.

    CAS  PubMed  Google Scholar 

  35. Xie W, Li G, Zhao D, Xie X, Wei Z, Wang W, et al. Relationship between fine particulate air pollution and ischaemic heart disease morbidity and mortality. Heart. 2015;101(4):257–63.

    CAS  PubMed  Google Scholar 

  36. Lu F, Zhou L, Chen X, Li C, Wang H, Xu Y, et al. Association between ambient inhalable particle pollution and mortality due to circulatory disease in Nanjing: a case-crossover study. Zhonghua Yu Fang Yi Xue Za Zhi. 2015;49(9):817–21.

    CAS  PubMed  Google Scholar 

  37. Lu F, Xu D, Cheng Y, Dong S, Guo C, Jiang X, et al. Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. Environ Res. 2015;136:196–204.

    CAS  PubMed  Google Scholar 

  38. Zhang LW, Chen X, Xue XD, Sun M, Han B, Li CP, et al. Long-term exposure to high particulate matter pollution and cardiovascular mortality: a 12-year cohort study in four cities in northern China. Environ Int. 2014;62:41–7.

    PubMed  Google Scholar 

  39. Beelen R, Stafoggia M, Raaschou-Nielsen O, Andersen ZJ, Xun WW, Katsouyanni K, et al. Long-term exposure to air pollution and cardiovascular mortality: an analysis of 22 European cohorts. Epidemiology. 2014;25(3):368–78.

    Google Scholar 

  40. Chen K, Wolf K, Breitner S, Gasparrini A, Stafoggia M, Samoli E, et al. Two-way effect modifications of air pollution and air temperature on total natural and cardiovascular mortality in eight European urban areas. Environ Int. 2018;116:186–96.

    CAS  PubMed  Google Scholar 

  41. Liu C, Yin P, Chen R, Meng X, Wang L, Niu Y, et al. Ambient carbon monoxide and cardiovascular mortality: a nationwide time-series analysis in 272 cities in China. Lancet Planet Health. 2018;2(1):e12–8.

    PubMed  Google Scholar 

  42. Wang L, Liu C, Meng X, Niu Y, Lin Z, Liu Y, et al. Associations between short-term exposure to ambient sulfur dioxide and increased cause-specific mortality in 272 Chinese cities. Environ Int. 2018;117:33–9.

    CAS  PubMed  Google Scholar 

  43. Newell K, Kartsonaki C, Lam KBH, Kurmi O. Cardiorespiratory health effects of gaseous ambient air pollution exposure in low and middle income countries: a systematic review and meta-analysis. Environ Health. 2018;17(1):41.

    PubMed  PubMed Central  Google Scholar 

  44. Crouse DL, Peters PA, van Donkelaar A, Goldberg MS, Villeneuve PJ, Brion O, et al. Risk of nonaccidental and cardiovascular mortality in relation to long-term exposure to low concentrations of fine particulate matter: a Canadian national-level cohort study. Environ Health Perspect. 2012;120(5):708–14.

    PubMed  PubMed Central  Google Scholar 

  45. Luo K, Li W, Zhang R, Li R, Xu Q, Cao Y. Ambient fine particulate matter exposure and risk of cardiovascular mortality: adjustment of the meteorological factors. Int J Environ Res Public Health. 2016;13(11). https://doi.org/10.3390/ijerph13111082.

  46. Huang C, Moran AE, Coxson PG, Yang X, Liu F, Cao J, et al. Potential cardiovascular and total mortality benefits of air pollution control in urban China. Circulation. 2017;136(17):1575–84.

    PubMed  PubMed Central  Google Scholar 

  47. Thurston GD, Ahn J, Cromar KR, Shao Y, Reynolds HR, Jerrett M, et al. Ambient particulate matter air pollution exposure and mortality in the NIH-AARP diet and health cohort. Environ Health Perspect. 2016;124(4):484–90.

    PubMed  Google Scholar 

  48. Zhao X, Sun Z, Ruan Y, Yan J, Mukherjee B, Yang F, et al. Personal black carbon exposure influences ambulatory blood pressure: air pollution and cardiometabolic disease (AIRCMD-China) study. Hypertension. 2014;63(4):871–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Coogan PF, White LF, Yu J, Brook RD, Burnett RT, Marshall JD, et al. Long-term exposure to NO2 and ozone and hypertension incidence in the black women’s health study. Am J Hypertens. 2017;30(4):367–72.

    PubMed  PubMed Central  Google Scholar 

  50. Giorgini P, Di Giosia P, Grassi D, Rubenfire M, Brook RD, Ferri C. Air pollution exposure and blood pressure: an updated review of the literature. Curr Pharm Des. 2016;22(1):28–51.

    CAS  PubMed  Google Scholar 

  51. Coogan PF, White LF, Yu J, Burnett RT, Seto E, Brook RD, et al. PM2.5 and diabetes and hypertension incidence in the black women’s health study. Epidemiology. 2016;27(2):202–10.

    PubMed  PubMed Central  Google Scholar 

  52. Byrd JB, Morishita M, Bard RL, Das R, Wang L, Sun Z, et al. Acute increase in blood pressure during inhalation of coarse particulate matter air pollution from an urban location. J Am Soc Hypertens. 2016;10(2):133–139.e4.

    CAS  PubMed  Google Scholar 

  53. Brook RD, Sun Z, Brook JR, Zhao X, Ruan Y, Yan J, et al. Extreme air pollution conditions adversely affect blood pressure and insulin resistance: the air pollution and cardiometabolic disease study. Hypertension. 2016;67(1):77–85.

    CAS  PubMed  Google Scholar 

  54. Rao X, Montresor-Lopez J, Puett R, Rajagopalan S, Brook RD. Ambient air pollution: an emerging risk factor for diabetes mellitus. Curr Diab Rep. 2015;15(6):603.

    PubMed  Google Scholar 

  55. Giorgini P, Rubenfire M, Das R, Gracik T, Wang L, Morishita M, et al. Higher fine particulate matter and temperature levels impair exercise capacity in cardiac patients. Heart. 2015;101(16):1293–301.

    CAS  PubMed  Google Scholar 

  56. Coogan PF, White LF, Jerrett M, Brook RD, Su JG, Seto E, et al. Air pollution and incidence of hypertension and diabetes mellitus in black women living in Los Angeles. Circulation. 2012;125(6):767–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Dvonch JT, Kannan S, Schulz AJ, Keeler GJ, Mentz G, House J, et al. Acute effects of ambient particulate matter on blood pressure: differential effects across urban communities. Hypertension. 2009;53(5):853–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Brook RD, Rajagopalan S. Particulate matter, air pollution, and blood pressure. J Am Soc Hypertens. 2009;3(5):332–50.

    PubMed  Google Scholar 

  59. • Bell G, Mora S, Greenland P, Tsai M, Gill E, Kaufman JD. Association of air pollution exposures with high-density lipoprotein cholesterol and particle number: the multi-ethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol. 2017;37(5):976–82 Large, multi-ethnic study examining the cross-sectional relashionship between air pollution and both HDL cholesterol and HDL particle number. A 0.7 × 10 −6 m −1 higher exposure to balck carbon averaged over 1 year was significantly associated with a lower HDL cholesterol.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhong J, Cayir A, Trevisi L, Sanchez-Guerra M, Lin X, Peng C, et al. Traffic-related air pollution, blood pressure, and adaptive response of mitochondrial abundance. Circulation. 2016;133(4):378–87.

    CAS  PubMed  Google Scholar 

  61. Eze IC, Schaffner E, Fischer E, Schikowski T, Adam M, Imboden M, et al. Long-term air pollution exposure and diabetes in a population-based Swiss cohort. Environ Int. 2014;70:95–105.

    CAS  PubMed  Google Scholar 

  62. Eze IC, Hemkens LG, Bucher HC, Hoffmann B, Schindler C, Kunzli N, et al. Association between ambient air pollution and diabetes mellitus in Europe and North America: systematic review and meta-analysis. Environ Health Perspect. 2015;123(5):381–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Eze IC, Schaffner E, Foraster M, Imboden M, von Eckardstein A, Gerbase MW, et al. Long-term exposure to ambient air pollution and metabolic syndrome in adults. PLoS One. 2015;10(6):e0130337.

    PubMed  PubMed Central  Google Scholar 

  64. Chen H, Burnett RT, Kwong JC, Villeneuve PJ, Goldberg MS, Brook RD, et al. Risk of incident diabetes in relation to long-term exposure to fine particulate matter in Ontario, Canada. Environ Health Perspect. 2013;121(7):804–10.

    PubMed  PubMed Central  Google Scholar 

  65. Mehta AJ, Kubzansky LD, Coull BA, Kloog I, Koutrakis P, Sparrow D, et al. Associations between air pollution and perceived stress: the veterans administration normative aging study. Environ Health. 2015;14:10.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Li W, Dorans KS, Wilker EH, Rice MB, Kloog I, Schwartz JD, et al. Ambient air pollution, adipokines, and glucose homeostasis: the Framingham heart study. Environ Int. 2018;111:14–22.

    CAS  PubMed  Google Scholar 

  67. Li W, Dorans KS, Wilker EH, Rice MB, Schwartz J, Coull BA, et al. Residential proximity to major roadways, fine particulate matter, and adiposity: the Framingham heart study. Obesity (Silver Spring). 2016;24(12):2593–9.

    Google Scholar 

  68. Budoff MJ, Young R, Burke G, Jeffrey Carr J, Detrano RC, Folsom AR, et al. Ten-year association of coronary artery calcium with atherosclerotic cardiovascular disease (ASCVD) events: the multi-ethnic study of atherosclerosis (MESA). Eur Heart J. 2018;39(25):2401–8.

    PubMed  Google Scholar 

  69. Adar SD, Sheppard L, Vedal S, Polak JF, Sampson PD, Diez Roux AV, et al. Fine particulate air pollution and the progression of carotid intima-medial thickness: a prospective cohort study from the multi-ethnic study of atherosclerosis and air pollution. PLoS Med. 2013;10(4):e1001430.

    PubMed  PubMed Central  Google Scholar 

  70. Van Hee VC, Adar SD, Szpiro AA, Barr RG, Bluemke DA, Diez Roux AV, et al. Exposure to traffic and left ventricular mass and function: the multi-ethnic study of atherosclerosis. Am J Respir Crit Care Med. 2009;179(9):827–34.

    PubMed  PubMed Central  Google Scholar 

  71. Kaufman JD. Does air pollution accelerate progression of atherosclerosis? J Am Coll Cardiol. 2010;56(22):1809–11.

    PubMed  PubMed Central  Google Scholar 

  72. Gill EA, Curl CL, Adar SD, Allen RW, Auchincloss AH, O'Neill MS, et al. Air pollution and cardiovascular disease in the multi-ethnic study of atherosclerosis. Prog Cardiovasc Dis. 2011;53(5):353–60.

    PubMed  PubMed Central  Google Scholar 

  73. Kaufman JD, Adar SD, Allen RW, Barr RG, Budoff MJ, Burke GL, et al. Prospective study of particulate air pollution exposures, subclinical atherosclerosis, and clinical cardiovascular disease: the multi-ethnic study of atherosclerosis and air pollution (MESA air). Am J Epidemiol. 2012;176(9):825–37.

    PubMed  PubMed Central  Google Scholar 

  74. Krishnan RM, Adar SD, Szpiro AA, Jorgensen NW, Van Hee VC, Barr RG, et al. Vascular responses to long- and short-term exposure to fine particulate matter: MESA air (multi-ethnic study of atherosclerosis and air pollution). J Am Coll Cardiol. 2012;60(21):2158–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim SY, Sheppard L, Kaufman JD, Bergen S, Szpiro AA, Larson TV, et al. Individual-level concentrations of fine particulate matter chemical components and subclinical atherosclerosis: a cross-sectional analysis based on 2 advanced exposure prediction models in the multi-ethnic study of atherosclerosis. Am J Epidemiol. 2014;180(7):718–28.

    PubMed  PubMed Central  Google Scholar 

  76. D'Souza JC, Kawut SM, Elkayam LR, Sheppard L, Thorne PS, Jacobs DR Jr, et al. Ambient coarse particulate matter and the right ventricle: the multi-ethnic study of atherosclerosis. Environ Health Perspect. 2017;125(7):077019.

    PubMed  PubMed Central  Google Scholar 

  77. •• Jones MR, Diez-Roux AV, O'Neill MS, Guallar E, Sharrett AR, Post W, et al. Ambient air pollution and racial/ethnic differences in carotid intima-media thickness in the multi-ethnic study of atherosclerosis (MESA). J Epidemiol Community Health. 2015;69(12):1191–8 First study examining the role of air pollution exposure in racial/ethnic differences in atherosclerosis. The smaller carotid IMT levels in Chinese participants were even smaller after accounting for higher PM 2.5 concentrations in Chinese participants compared with Caucasian-American participants. Air pollution was not related to IMT differences in African-American and Hispanic participants compared with Caucasian-American participants.

    PubMed  PubMed Central  Google Scholar 

  78. O'Neill MS, Diez-Roux AV, Auchincloss AH, Shen M, Lima JA, Polak JF, et al. Long-term exposure to airborne particles and arterial stiffness: the multi-ethnic study of atherosclerosis (MESA). Environ Health Perspect. 2011;119(6):844–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Aaron CP, Chervona Y, Kawut SM, Diez Roux AV, Shen M, Bluemke DA, et al. Particulate matter exposure and cardiopulmonary differences in the multi-ethnic study of atherosclerosis. Environ Health Perspect. 2016;124(8):1166–73.

    PubMed  PubMed Central  Google Scholar 

  80. Cosselman KE, Navas-Acien A, Kaufman JD. Environmental factors in cardiovascular disease. Nat Rev Cardiol. 2015;12(11):627–42.

    CAS  PubMed  Google Scholar 

  81. Coogan PF, White LF, Yu J, Burnett RT, Marshall JD, Seto E, et al. Long term exposure to NO2 and diabetes incidence in the black women’s health study. Environ Res. 2016;148:360–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Jerrett M, Brook R, White LF, Burnett RT, Yu J, Su J, et al. Ambient ozone and incident diabetes: a prospective analysis in a large cohort of African American women. Environ Int. 2017;102:42–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ramanathan G, Yin F, Speck M, Tseng CH, Brook JR, Silverman F, et al. Effects of urban fine particulate matter and ozone on HDL functionality. Part Fibre Toxicol. 2016;13(1):26.

    PubMed  PubMed Central  Google Scholar 

  84. Chen R, Zhao A, Chen H, Zhao Z, Cai J, Wang C, et al. Cardiopulmonary benefits of reducing indoor particles of outdoor origin: a randomized, double-blind crossover trial of air purifiers. J Am Coll Cardiol. 2015;65(21):2279–87.

    PubMed  PubMed Central  Google Scholar 

  85. Jones MR, Diez-Roux AV, Hajat A, Kershaw KN, O'Neill MS, Guallar E, et al. Race/ethnicity, residential segregation, and exposure to ambient air pollution: the multi-ethnic study of atherosclerosis (MESA). Am J Public Health. 2014;104(11):2130–7.

    PubMed  PubMed Central  Google Scholar 

  86. Morello-Frosch R, Lopez R. The riskscape and the color line: examining the role of segregation in environmental health disparities. Environ Res. 2006;102(2):181–96.

    CAS  PubMed  Google Scholar 

  87. Weaver AM, Wellenius GA, Wu WC, Hickson DA, Kamalesh M, Wang Y. Residential distance to major roadways and cardiac structure in African Americans: cross-sectional results from the Jackson heart study. Environ Health. 2017;16(1):21.

    PubMed  PubMed Central  Google Scholar 

  88. Hackbarth AD, Romley JA, Goldman DP. Racial and ethnic disparities in hospital care resulting from air pollution in excess of federal standards. Soc Sci Med. 2011;73(8):1163–8.

    PubMed  Google Scholar 

  89. •• Erqou S, Clougherty JE, Olafiranye O, Magnani JW, Aiyer A, Tripathy S, et al. Particulate matter air pollution and racial differences in cardiovascular disease risk. Arterioscler Thromb Vasc Biol. 2018;38(4):935–42 This study reported a 45% increase in the risk of cardiovascular events among blacks compared to whites in Western Pennsylvania (greater Pittsburgh) partly because of higher chronic exposure to PM 2.5 among blacks [91]. This association was no longer statistically significant after further adjustments for measures of SES, including income and education.

    CAS  PubMed  Google Scholar 

  90. Rooney MS, Arku RE, Dionisio KL, Paciorek C, Friedman AB, Carmichael H, et al. Spatial and temporal patterns of particulate matter sources and pollution in four communities in Accra, Ghana. Sci Total Environ. 2012;435-436:107–14.

    CAS  PubMed  Google Scholar 

  91. Hajat A, Hsia C, O'Neill MS. Socioeconomic disparities and air pollution exposure: a global review. Curr Environ Health Rep. 2015;2(4):440–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Goldberg MS, Burnett RT, Stieb DM, Brophy JM, Daskalopoulou SS, Valois MF, et al. Associations between ambient air pollution and daily mortality among elderly persons in Montreal, Quebec. Sci Total Environ. 2013;463-464:931–42.

    CAS  PubMed  Google Scholar 

  93. Pun VC, Kazemiparkouhi F, Manjourides J, Suh HH. Long-term PM2.5 exposure and respiratory, cancer, and cardiovascular mortality in older US adults. Am J Epidemiol. 2017;186(8):961–9.

    PubMed  Google Scholar 

  94. Katsoulis M, Dimakopoulou K, Pedeli X, Trichopoulos D, Gryparis A, Trichopoulou A, et al. Long-term exposure to traffic-related air pollution and cardiovascular health in a Greek cohort study. Sci Total Environ. 2014;490:934–40.

    CAS  PubMed  Google Scholar 

  95. Zhang C, Ding R, Xiao C, Xu Y, Cheng H, Zhu F, et al. Association between air pollution and cardiovascular mortality in Hefei, China: a time-series analysis. Environ Pollut. 2017;229:790–7.

    CAS  PubMed  Google Scholar 

  96. Stockfelt L, Andersson EM, Molnar P, Gidhagen L, Segersson D, Rosengren A, et al. Long-term effects of total and source-specific particulate air pollution on incident cardiovascular disease in Gothenburg, Sweden. Environ Res. 2017;158:61–71.

    CAS  PubMed  Google Scholar 

  97. Green R, Broadwin R, Malig B, Basu R, Gold EB, Qi L, et al. Long- and short-term exposure to air pollution and inflammatory/hemostatic markers in midlife women. Epidemiology. 2016;27(2):211–20.

    PubMed  PubMed Central  Google Scholar 

  98. Ho HC, Wong MS, Yang L, Chan TC, Bilal M. Influences of socioeconomic vulnerability and intra-urban air pollution exposure on short-term mortality during extreme dust events. Environ Pollut. 2018;235:155–62.

    CAS  PubMed  Google Scholar 

  99. Fan X, Lam KC, Yu Q. Differential exposure of the urban population to vehicular air pollution in Hong Kong. Sci Total Environ. 2012;426:211–9.

    CAS  PubMed  Google Scholar 

  100. Branis M, Linhartova M. Association between unemployment, income, education level, population size and air pollution in Czech cities: evidence for environmental inequality? A pilot national scale analysis. Health Place. 2012;18(5):1110–4.

    PubMed  Google Scholar 

  101. Su JG, Jerrett M, Morello-Frosch R, Jesdale BM, Kyle AD. Inequalities in cumulative environmental burdens among three urbanized counties in California. Environ Int. 2012;40:79–87.

    CAS  PubMed  Google Scholar 

  102. Bauer M, Moebus S, Mohlenkamp S, Dragano N, Nonnemacher M, Fuchsluger M, et al. Urban particulate matter air pollution is associated with subclinical atherosclerosis: results from the HNR (Heinz Nixdorf recall) study. J Am Coll Cardiol. 2010;56(22):1803–8.

    PubMed  Google Scholar 

  103. •• Li H, Cai J, Chen R, Zhao Z, Ying Z, Wang L, et al. Particulate matter exposure and stress hormone levels: a randomized, double-blind, crossover trial of air purification. Circulation. 2017;136(7):618–27 A randomized trial testing the efficacy of air purification on levels of stress hormones. Exposure to PMs with aerodynamic diameters ≤ 2.5 μg/m 3 led to significant increases in cortisol, cortisone, epinephrine, and norepinephrine.

    CAS  PubMed  Google Scholar 

  104. Tonne C, Yanosky JD, Beevers S, Wilkinson P, Kelly FJ. PM mass concentration and PM oxidative potential in relation to carotid intima-media thickness. Epidemiology. 2012;23(3):486–94.

    PubMed  Google Scholar 

  105. Weichenthal S, Villeneuve PJ, Burnett RT, van Donkelaar A, Martin RV, Jones RR, et al. Long-term exposure to fine particulate matter: association with nonaccidental and cardiovascular mortality in the agricultural health study cohort. Environ Health Perspect. 2014;122(6):609–15.

    PubMed  PubMed Central  Google Scholar 

  106. Baumgartner J, Zhang Y, Schauer JJ, Huang W, Wang Y, Ezzati M. Highway proximity and black carbon from cookstoves as a risk factor for higher blood pressure in rural China. Proc Natl Acad Sci U S A. 2014;111(36):13229–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Dales RE, Cakmak S. Does mental health status influence susceptibility to the physiologic effects of air pollution? A population based study of Canadian children. PLoS One. 2016;11(12):e0168931.

    PubMed  PubMed Central  Google Scholar 

  108. Kalsch H, Hennig F, Moebus S, Mohlenkamp S, Dragano N, Jakobs H, et al. Are air pollution and traffic noise independently associated with atherosclerosis: the Heinz Nixdorf recall study. Eur Heart J. 2014;35(13):853–60.

    PubMed  Google Scholar 

  109. Bruske I, Hampel R, Baumgartner Z, Ruckerl R, Greven S, Koenig W, et al. Ambient air pollution and lipoprotein-associated phospholipase A(2) in survivors of myocardial infarction. Environ Health Perspect. 2011;119(7):921–6.

    PubMed  PubMed Central  Google Scholar 

  110. Villeneuve PJ, Johnson JY, Pasichnyk D, Lowes J, Kirkland S, Rowe BH. Short-term effects of ambient air pollution on stroke: who is most vulnerable? Sci Total Environ. 2012;430:193–201.

    CAS  PubMed  Google Scholar 

  111. Turner MC, Cohen A, Burnett RT, Jerrett M, Diver WR, Gapstur SM, et al. Interactions between cigarette smoking and ambient PM2.5 for cardiovascular mortality. Environ Res. 2017;154:304–10.

    CAS  PubMed  Google Scholar 

  112. Hart JE, Puett RC, Rexrode KM, Albert CM, Laden F. Effect modification of long-term air pollution exposures and the risk of incident cardiovascular disease in US women. J Am Heart Assoc. 2015;4(12):e002301.

    PubMed  PubMed Central  Google Scholar 

  113. Qin XD, Qian Z, Vaughn MG, Trevathan E, Emo B, Paul G, et al. Gender-specific differences of interaction between obesity and air pollution on stroke and cardiovascular diseases in Chinese adults from a high pollution range area: a large population based cross sectional study. Sci Total Environ. 2015;529:243–8.

    CAS  PubMed  Google Scholar 

  114. Akbarzadeh MA, Khaheshi I, Sharifi A, Yousefi N, Naderian M, Namazi MH, et al. The association between exposure to air pollutants including PM10, PM2.5, ozone, carbon monoxide, sulfur dioxide, and nitrogen dioxide concentration and the relative risk of developing STEMI: a case-crossover design. Environ Res. 2018;161:299–303.

    CAS  PubMed  Google Scholar 

  115. van der Zee SC, Fischer PH, Hoek G. Air pollution in perspective: health risks of air pollution expressed in equivalent numbers of passively smoked cigarettes. Environ Res. 2016;148:475–83.

    PubMed  Google Scholar 

  116. Mehta AJ, Zanobetti A, Bind MA, Kloog I, Koutrakis P, Sparrow D, et al. Long-term exposure to ambient fine particulate matter and renal function in older men: the veterans administration normative aging study. Environ Health Perspect. 2016;124(9):1353–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Hadley MB, Vedanthan R, Fuster V. Air pollution and cardiovascular disease: a window of opportunity. Nat Rev Cardiol. 2018;15(4):193–4.

    PubMed  Google Scholar 

  118. Maji KJ, Arora M, Dikshit AK. Burden of disease attributed to ambient PM2.5 and PM10 exposure in 190 cities in China. Environ Sci Pollut Res Int. 2017;24(12):11559–72.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Tibuakuu.

Ethics declarations

Conflict of Interest

Erin D. Michos reports personal fees from Siemens Healthcare Diagnostics, outside the submitted work. Miranda R. Jones, Martin Tibuakuu, and Ana Navas-Acien each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardiovascular Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tibuakuu, M., Michos, E.D., Navas-Acien, A. et al. Air Pollution and Cardiovascular Disease: a Focus on Vulnerable Populations Worldwide. Curr Epidemiol Rep 5, 370–378 (2018). https://doi.org/10.1007/s40471-018-0166-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40471-018-0166-8

Keywords

Navigation