Skip to main content
Log in

Environmental Exposure Mixtures: Questions and Methods to Address Them

  • Epidemiologic Methods (R Maclehose, Section Editor)
  • Published:
Current Epidemiology Reports Aims and scope Submit manuscript

Abstract

Purpose of This Review

This review provides a summary of statistical approaches that researchers can use to study environmental exposure mixtures. Two primary considerations are the form of the research question and the statistical tools best suited to address that question. Because the choice of statistical tools is not rigid, we make recommendations about when each tool may be most useful.

Recent Findings

When dimensionality is relatively low, some statistical tools yield easily interpretable estimates of effect (e.g., risk ratio, odds ratio) or intervention impacts. When dimensionality increases, it is often necessary to compromise this interpretablity in favor of identifying interesting statistical signals from noise; this requires applying statistical tools that are oriented more heavily towards dimension reduction via shrinkage and/or variable selection.

Summary

The study of complex exposure mixtures has prompted development of novel statistical methods. We suggest that further validation work would aid practicing researchers in choosing among existing and emerging statistical tools for studying exposure mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wild CP. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomark Prev. 2005;14(8):1847–50.

    Article  CAS  Google Scholar 

  2. Wild CP. The exposome: from concept to utility. Int J Epidemiol. 2012;41(1):24–32.

    Article  PubMed  Google Scholar 

  3. •• Braun JM, et al. What can epidemiological studies tell us about the impact of chemical mixtures on human health? Environ Health Perspect. 2016;124(1):A6–9. Provides an overview of a recent NIEHS workshop and key areas of research interest.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hamra GB, Guha N, Cohen A, Laden F, Raaschou-Nielsen O, Samet JM, et al. Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ Health Perspect. 2014;122(9):906–11.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chung Y, Dominici F, Wang Y, Coull BA, Bell ML. Associations between long-term exposure to chemical constituents of fine particulate matter (PM2.5) and mortality in Medicare enrollees in the eastern United States. Environ Health Perspect. 2015;123(5):467–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Howard GJ, Webster TF. Contrasting theories of interaction in epidemiology and toxicology. Environ Health Perspect. 2013;121(1):1–6.

    Article  PubMed  Google Scholar 

  7. Czarnota J, Gennings C, Wheeler DC. Assessment of weighted quantile sum regression for modeling chemical mixtures and cancer risk. Cancer Informat. 2015;14(Suppl 2):159–71.

    CAS  Google Scholar 

  8. Wolff MS, Engel SM, Berkowitz GS, Ye X, Silva MJ, Zhu C, et al. Prenatal phenol and phthalate exposures and birth outcomes. Environ Health Perspect. 2008;116(8):1092–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Varshavsky JR, Zota AR, Woodruff TJ. A novel method for calculating potency-weighted cumulative phthalates exposure with implications for identifying racial/ethnic disparities among U.S. reproductive-aged women in NHANES 2001-2012. Environ Sci Technol. 2016;50(19):10616–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. VanderWeele TJ. On the distinction between interaction and effect modification. Epidemiology. 2009;20(6):863–71.

    Article  PubMed  Google Scholar 

  11. Bobb JF, Valeri L, Claus Henn B, Christiani DC, Wright RO, Mazumdar M, et al. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics. 2015;16(3):493–508.

    Article  PubMed  Google Scholar 

  12. Hamra G, MacLehose R, Richardson D. Markov chain Monte Carlo: an introduction for epidemiologists. Int J Epidemiol. 2013;42(2):627–34.

    Article  PubMed  PubMed Central  Google Scholar 

  13. MacLehose RF, Hamra GB. Applications of Bayesian methods to epidemiologic research. Curr Epidemiol Rep. 2014;1–7.

  14. Gelman A, Hill J, Yajima M. Why we (usually) don’t have to worry about multiple comparisons. J Res Educ Effect. 2012;5(2):189–211.

    Google Scholar 

  15. MacLehose RF, Dunson DB, Herring AH, Hoppin JA. Bayesian methods for highly correlated exposure data. Epidemiology. 2007;18(2):199–207.

    Article  PubMed  Google Scholar 

  16. Hamra G, Richardson D, MacLehose R, Wing S. Integrating informative priors from experimental research with Bayesian methods: an example from radiation epidemiology. Epidemiology. 2013;24(1):90–5.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hamra GB, et al. Lung cancer risk associated with regulated and unregulated chrysotile asbestos fibers. Epidemiology. 2016.

  18. Wold H. Partial least squares. In: Encyclopedia of statistical sciences. Hoboken: John Wiley & Sons, Inc.; 2004.

    Google Scholar 

  19. Wold S, Sjostrom M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst. 2001;58(2):109–30.

    Article  CAS  Google Scholar 

  20. Zou H, Hastie T. Regularization and variable selection via the elastic net. J.R. Statist Soc B. 2005;67(Part 2):301–20.

    Article  Google Scholar 

  21. Li Q, Lin N. The Bayesian elastic net. Bayesian Anal. 2010;5(1):151–70.

    Article  Google Scholar 

  22. Park T, Casella G. The Bayesian Lasso. J Am Stat Assoc. 2008;103(482):681–6.

    Article  CAS  Google Scholar 

  23. Chadeau-Hyam M, Campanella G, Jombart T, Bottolo L, Portengen L, Vineis P, et al. Deciphering the complex: methodological overview of statistical models to derive OMICS-based biomarkers. Environ Mol Mutagen. 2013;54(7):542–57.

    Article  PubMed  CAS  Google Scholar 

  24. • Stafoggia M, et al. Statistical approaches to address multi-pollutant mixtures and multiplee: the state of the science. Curr Environ Health Rep. 2017;4(4):481–90. Provides an overview of methods that can be applied to higher dimensional mixtures problems, such as exposomics.

    Article  PubMed  CAS  Google Scholar 

  25. Ho TK. Random decision forests, in Proceedings of the Third International Conference on Document Analysis and Recognition (Volume 1—Volume 1). 1995; IEEE Computer Society. pp. 278.

  26. Chipman HA, George EI, McCulloch RE. BART: Bayesian additive regression trees. Ann Appl Stat. 2010;4(1):266–98.

    Article  Google Scholar 

  27. Breiman L. Bagging predictors. Mach Learn. 1996;24(2):123–40.

    Google Scholar 

  28. Freund Y and Schapire RE. Experiments with a new boosting algorithm, in Proceedings of the Thirteenth International Conference on International Conference on Machine Learning. 1996; Morgan Kaufmann Publishers Inc., Bari. pp. 148–156.

  29. Valeri L, et al. The joint effect of prenatal exposure to metal mixtures on neurodevelopmental outcomes at 20–40 months of age: evidence from Rural Bangladesh. Environ Health Perspect. 2017;125(6):067015.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Herring AH. Nonparametric bayes shrinkage for assessing exposures to mixtures subject to limits of detection. Epidemiology. 2010;21(Suppl 4):S71–6.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lenters V, Portengen L, Rignell-Hydbom A, Jönsson BA, Lindh CH, Piersma AH, et al. Prenatal phthalate, perfluoroalkyl acid, and organochlorine exposures and term birth weight in three birth cohorts: multi-pollutant models based on elastic net regression. Environ Health Perspect. 2016;124(3):365–72.

    Article  PubMed  CAS  Google Scholar 

  32. Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2(3):18–22.

    Google Scholar 

  33. Agay-Shay K, Martinez D, Valvi D, Garcia-Esteban R, Basagaña X, Robinson O, et al. Exposure to endocrine-disrupting chemicals during pregnancy and weight at 7 years of age: a multi-pollutant approach. Environ Health Perspect. 2015;123(10):1030–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Austin E, Coull B, Thomas D, Koutrakis P. A framework for identifying distinct multipollutant profiles in air pollution data. Environ Int. 2012;45:112–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Milligan GW. Cluster analysis, in encyclopedia of statistical sciences. Hoboken: John Wiley & Sons, Inc; 2004.

    Google Scholar 

  36. Keil AP, et al. A Bayesian approach to the g-formula. Stat Methods Med Res. 2017; 962280217694665.

  37. Zanobetti A, Austin E, Coull BA, Schwartz J, Koutrakis P. Health effects of multi-pollutant profiles. Environ Int. 2014;71:13–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Robins J. A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect. Math Model. 1986;7(9–12):1393–512.

    Article  Google Scholar 

  39. Snowden JM, Mortimer KM, Kang Dufour MS, Tager IB. Population intervention models to estimate ambient NO2 health effects in children with asthma. J Expo Sci Environ Epidemiol. 2015;25(6):567–73.

    Article  PubMed  CAS  Google Scholar 

  40. Moore K, Neugebauer R, Lurmann F, Hall J, Brajer V, Alcorn S, et al. Ambient ozone concentrations and cardiac mortality in Southern California 1983-2000: application of a new marginal structural model approach. Am J Epidemiol. 2010;171(11):1233–43.

    Article  PubMed  Google Scholar 

  41. Bello GA, Arora M, Austin C, Horton MK, Wright RO, Gennings C. Extending the distributed lag model framework to handle chemical mixtures. Environ Res. 2017;156:253–64.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Liu SH, et al. Lagged kernel machine regression for identifying time windows of susceptibility to exposures of complex mixtures. Biostatistics. 2017.

  43. Richardson DB, MacLehose RF, Langholz B, Cole SR. Hierarchical latency models for dose-time-response associations. Am J Epidemiol. 2011;173(6):695–702.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pollack AZ, Perkins NJ, Mumford SL, Ye A, Schisterman EF. Correlated biomarker measurement error: an important threat to inference in environmental epidemiology. Am J Epidemiol. 2013;177(1):84–92.

    Article  PubMed  CAS  Google Scholar 

  45. Basagana X, et al. Measurement error in epidemiologic studies of air pollution based on land-use regression models. Am J Epidemiol. 2013;178(8):1342–6.

    Article  PubMed  Google Scholar 

  46. MacLehose RF, et al. Bayesian methods for correcting misclassification: an example from birth defects epidemiology. Epidemiology. 2009;20(1):27–35.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cole SR, Chu H, Greenland S. Multiple-imputation for measurement-error correction. Int J Epidemiol. 2006;35(4):1074–81.

    Article  PubMed  Google Scholar 

  48. Kuchenhoff H, Mwalili SM, Lesaffre E. A general method for dealing with misclassification in regression: the misclassification SIMEX. Biometrics. 2006;62(1):85–96.

    Article  PubMed  Google Scholar 

  49. Rosner B, Willett WC, Spiegelman D. Correction of logistic regression relative risk estimates and confidence intervals for systematic within-person measurement error. Stat Med. 1989;8(9):1051–69. discussion 1071-3

    Article  PubMed  CAS  Google Scholar 

  50. Keller JP, Drton M, Larson T, Kaufman JD, Sandler DP, Szpiro AA. Covariate-adaptive clustering of exposures for air pollution epidemiology cohorts. Ann Appl Stat. 2017;11(1):93–113.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dionisio KL, Chang HH, Baxter LK. A simulation study to quantify the impacts of exposure measurement error on air pollution health risk estimates in copollutant time-series models. Environ Health. 2016;15(1):114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Carpenter B, et al. Stan: a probabilistic programming language 2017. 2017;76(1):32.

  53. Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc Ser B Stat Methodol. 2009;71:319–92.

    Article  Google Scholar 

Download references

Funding

JPB was supported by funding from the National Institutes of Health (U24 OD023382).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassan B. Hamra.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Epidemiologic Methods

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamra, G.B., Buckley, J.P. Environmental Exposure Mixtures: Questions and Methods to Address Them. Curr Epidemiol Rep 5, 160–165 (2018). https://doi.org/10.1007/s40471-018-0145-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40471-018-0145-0

Keywords

Navigation