Parametric relationship between hypoid gear teeth and accurate face-milling cutter

Abstract

The cutter systems of hypoid gear cutting machines contain groups of inside and outside blades. In these cutter systems, the side cutting edges of the blades machine the convex and concave gear teeth while rotating about the cutter rotation axis. The side cutting edges lay on the rake face formed through the blade, rake, and relief angles; hence, the normal cross-section of the cutter swept surface forms hyperboloid gear teeth. Using the accurate geometry of the cutter system, a relationship between the pressure and spiral angles of the gear tooth and the parameters of the cutter system is developed for the FORMAT machining of a hypoid gear. A new parameterization of the gear tooth surfaces is introduced to determine these angles for the accurate gear tooth by the accurate cutter system. A numerical example with different cutter systems and blade parameters is presented, demonstrating the effects of rake and relief angles over the pressure and spiral angles on mean point projections and gear tooth surface. Finally, the change in pressure and spiral angles with respect to the rake and relief angles are plotted, and the results are analyzed. Finally, it is concluded that the pressure and spiral angles are changed up to a few seconds of a degree in the operating area of the tooth with the change in the back and side rake angles. The side relief angle exhibited little or no effect over the geometry of the gear tooth.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig.13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Abbreviations

k:

k is a generic variable and can be replaced by i or o for the inside or outside blade, or convex or concave sides of the gear tooth

\(A_{1}\) :

Distance from the root cone apex to the pitch cone apex for \(M\)

\(a_{\text{og}}\) :

Gear tooth addendum at the heel

\(b_{\text{og}}\) :

Gear tooth dedendum at the heel

\(a_{\text{G}}\) :

Gear tooth addendum in the mean cross-section

\(b_{\text{G}}\) :

Gear tooth dedendum in the mean cross-section

\(b_{\text{P}}\) :

Pinion tooth dedendum in the mean cross-section

\(c\) :

Clearance between the gear and pinion teeth in the mean cross-section

ECE:

Equivalent cutting edge

\(F\) :

Face width of the gear tooth

\(F_{\text{r}}\) :

Projection of face width along the root cone generatrix

\(h_{\text{M}}\) :

Height of mean point \(M\) at the center of the tooth land

\(h_{\text{P}}\) :

Height of the point \(P\) along the normal at the middle of the tooth land

\(L_{\text{p}}\) :

Distance between pitch cone apex and point \(M\)

\(L_{\text{r}}\) :

Distance between root cone apex and middle of the tooth land

\(l_{\text{r}}\) :

Distance between root cone apex and point \(P\)

\(M\) :

Mean point

\(M_{\text{i}} ,M_{\text{o}} \varvec{ }\) :

Mean point projections on the gear profile or ECE curves

\(P\) :

Parametric point on gear tooth

\(P_{\text{i}} ,P_{\text{o}}\) :

Projections of point \(P\) at the ECE

\(\varvec{P}_{\text{kb}}\) :

ECE curves in \(O_{\text{b}}\) coordinate system

\(P_{\text{w}}\) :

Point width of the cutter

\(\varvec{R}_{\text{kb}}\) :

ECE curves rotated about \(X_{\text{cg}}\) axis in \(O_{\text{b}}\) coordinate system

\(R_{\text{cg}}\) :

Average radius of the cutter

\(\varvec{S}_{\text{cek}}\) :

Vector along the side cutting edge of the blade

\(\varvec{s}_{\text{cek}}\) :

Unit vector along the side cutting edge of the blade

\({\mathbf{s}}\) :

Normal vector at the middle of gear tooth land

\(\varvec{s}_{\text{g}}\) :

Symmetric axis of the gear tooth flanks

\(\varvec{s}_{\text{e}}\) :

Symmetric axis of the tangents at projections \(M_{\text{i}} ,M_{\text{o}}\) on ECE

\(\varvec{t}_{\text{k}}\) :

Unit tangent vectors \(\varvec{t}_{\text{i}}\) and \(\varvec{t}_{\text{o}}\) at the ECE curves at points \(P_{\text{i}} ,P_{\text{o}}\)

\(\varvec{n}_{\text{k}}\) :

Unit normal vectors \(\varvec{n}_{\text{i}}\) and \(\varvec{n}_{\text{o}}\) at the ECE curve at points \(P_{\text{i}} ,P_{\text{o}}\)

\(\varvec{n}_{\text{p}}\) :

Unit normal to the plane Ω formed by the curves \(\varvec{R}_{\text{k}}\)

\(u_{\text{k}}\) :

Length-wise parameters of the inside \((u_{\text{i}} )\varvec{ }\) and outside cutting edges \((u_{\text{o}} )\)

\(u_{\text{p}}\) :

Length-wise parameter of the gear tooth

\(v_{\text{k}}\) :

Parameters of the inside \((v_{\text{i}} )\varvec{ }\) and outside ECE curves \((v_{\text{o}} )\)

\(v_{\text{kM}}\) :

Parameter of the ECE curve at the points \(M_{\text{i}} ,M_{\text{o}}\), i.e., \(v_{\text{iM}} \varvec{ }\) and \(v_{\text{oM}}\)

\(\varvec{x}_{\text{b}}\) :

Unit vector along the negative direction of \(X_{\text{b}}\) axis

\(\varvec{x}_{\text{p}}\) :

Unit vector along the gear rotation axis

\(\varvec{x}_{\text{k}}\) :

Unit vector perpendicular to the vectors \(\varvec{x}_{\text{p}} \varvec{ }\) and \(\varvec{y}_{\text{k}}\)

\(\varvec{y}_{\text{k}}\) :

Unit vector along the pitch cone generatrix towards the points \(P_{\text{i}} ,P_{\text{o}}\)

\(\varvec{z}_{\text{k}}\) :

Unit vector perpendicular to the vectors \(\varvec{x}_{\text{k}} \varvec{ }\) and \(\varvec{y}_{\text{k}}\)

\(\alpha_{{{\text{e}},{\text{k}}}}\) :

ECE angles \(\alpha_{{{\text{e}},{\text{i}}}}\) and \(\alpha_{{{\text{e}},{\text{o}}}}\) formed by tangents \(\varvec{t}_{\text{i}}\) and \(\varvec{t}_{\text{o}}\) with the \(\varvec{x}_{\text{b}}\)

\(\alpha_{{{\text{g}},{\text{k}}}}\) :

Gear flank angles \(\alpha_{{{\text{g}},{\text{i}}}}\) and \(\alpha_{{{\text{g}},{\text{o}}}}\) of convex and concave gear tooth

\(\alpha_{{{\text{o}},{\text{k}}}}\) :

Back rake angles \(\alpha_{{{\text{o}},{\text{i}}}}\) and \(\alpha_{{{\text{o}},{\text{o}}}}\) of inside and outside blades

\(\alpha_{{{\text{f}},{\text{k}}}}\) :

Side rake angles \(\alpha_{{{\text{f}},{\text{i}}}}\) and \(\alpha_{{{\text{f}},{\text{o}}}}\) of inside and outside blades

\(\alpha_{{{\text{b}},{\text{k}}}}\) :

Blade angles \(\alpha_{{{\text{b}},{\text{i}}}}\) and \(\alpha_{{{\text{b}},{\text{o}}}}\) of inside and outside blades

\(\gamma_{{{\text{f}},{\text{k}}}}\) :

Side rake angles \(\gamma_{{{\text{f}},{\text{i}}}}\) and \(\gamma_{{{\text{f}},{\text{o}}}}\) of inside and outside blades

\(\beta_{\text{k}}\) :

Spiral angle at points \(P_{\text{i}} ,P_{\text{o}}\)

\(\beta_{\text{r}}\) :

Spiral angle on the root cone tangent plane

\(\theta_{\text{cg}}\) :

Angular parameter of the cutter swept surface

\(\theta_{\text{P}}\) :

Angular parameter of the gear tooth

\(\varGamma\) :

Pitch angle of the gear

\(\varGamma_{\text{o}}\) :

Face angle of the gear

\(\varGamma_{\text{R}}\) :

Root angle of the gear

\(\delta_{\text{G}}\) :

Dedendum angle of the gear

References

  1. 1.

    Wasif M, Chen ZC (2012) Cutter radius and blade angle selection model for the high speed face milling of hypoid gear. In: International conference on virtual machining process technology (VMPT 2012), May 28 to June 1, Montreal, Canada, 2012

  2. 2.

    Wasif M, Chen ZC (2016) An accurate approach to determine the cutting system for the face milling of hypoid gears. Int J Adv Manuf Technol 84(9–12):1873–1888

    Google Scholar 

  3. 3.

    Wasif M, Chen ZC, Hasan SM (2016) Determination of cutter-head geometry for the face-milling of hypoid gears. Int J Adv Manuf Technol 86(9):3081–3090

    Google Scholar 

  4. 4.

    Xie S (2013) A genuine face milling cutter geometric model for spiral bevel and hypoid gears. Int J Adv Manuf Technol 67(9–12):2619–2626

    Google Scholar 

  5. 5.

    Litvin FL, Gutman Y (1981) Method of synthesis and analysis for hypoid gear-drives of “Formate” and “Helixform”; Part 1-3. J Mech Des 103:83–113

    Google Scholar 

  6. 6.

    AGMA/ANSI (2005) Manual for the spiral bevel gears

  7. 7.

    Huston RL, Coy JJ (1982) Surface geometry of circular cut spiral bevel gears. J Mech Des 104:743–748

    Google Scholar 

  8. 8.

    Fong ZH, Tsay C (1991) A mathematical model for the tooth geometry of circular-cut spiral bevel gears. J Mech Des 113:174–181

    Google Scholar 

  9. 9.

    Litvin FL, Zhang Y, Lundy M et al (1988) Determination of settings of a tilted head cutter for generation of hypoid and spiral bevel gears. J Mech Des 110:495–500

    Google Scholar 

  10. 10.

    Litvin FL, Wang AG, Handschuh RF (1996) Computerized design and analysis of face-milled, uniform tooth height spiral bevel gear drives. J Mech Des 118:573–579

    Google Scholar 

  11. 11.

    Litvin FL, Wang AG, Handschuh RF (1998) Computerized generation and simulation of meshing and contact of spiral bevel gears with improved geometry. Comput Methods Appl Mech Eng 158:35–64

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Litvin FL, Alfonso F, Fan Q et al (2002) Computerized design, simulation of meshing, and contact and stress analysis of face-milled formate generated spiral bevel gears. Mech Mach Theory 37:441–459

    MATH  Google Scholar 

  13. 13.

    Litvin FL, Fuentes A, Hayasaka K (2006) Design, manufacture, stress analysis, and experimental tests of low-noise high endurance spiral bevel gears. Mech Mach Theory 41:83–118

    MATH  Google Scholar 

  14. 14.

    Stadtfeld H (2000) The ultimate motion graph. J Mech Des 122:317–322

    Google Scholar 

  15. 15.

    Argyris J, Fuentes A, Litvin FL (2002) Computerized integrated approach for design and stress analysis of spiral bevel gears. Comput Methods Appl Mech Eng 191:1057–1095

    MATH  Google Scholar 

  16. 16.

    Fuentes A, Litvin FL, Mullins BR et al (2002) Design and stress analysis of low-noise adjusted bearing contact spiral bevel gears. J Mech Des 124:524–532

    Google Scholar 

  17. 17.

    Simon V (2001) Optimal machine tool setting for hypoid gears improving load distribution. J Mech Des 123:577–582

    Google Scholar 

  18. 18.

    Simon V (2005) Optimal tooth modifications in hypoid gears. J Mech Des 127:646–655

    Google Scholar 

  19. 19.

    Simon V (2008) Machine-tool settings to reduce the sensitivity of spiral bevel gears to tooth errors and misalignments. J Mech Design 130:082603-1–082603-10

    Google Scholar 

  20. 20.

    Fan Q (2006) Computerized modeling and simulation of spiral bevel and hypoid gears manufactured by Gleason face hobbing process. J Mech Des 128:1315–1327

    Google Scholar 

  21. 21.

    Fan Q (2007) Enhanced algorithms of contact simulation for hypoid gear drives produced by face-milling and face-hobbing processes. J Mech Des 129:31–37

    Google Scholar 

  22. 22.

    Shih YP, Fong ZH (2007) Flank modification methodology for face-hobbing hypoid gears based on ease-off topology. J Mech Des 129:1294–1302

    Google Scholar 

  23. 23.

    Vimercati M (2007) Mathematical model for tooth surfaces representation of face-hobbed hypoid gears and its application to contact analysis and stress calculation. Mech Mach Theory 42:668–690

    MATH  Google Scholar 

  24. 24.

    Artoni A, Gabiccini M, Guiggiani M (2008) Nonlinear identification of machine setting for flank from modifications in hypoid gears. J Mech Des 130:112602-1–112602-8

    Google Scholar 

  25. 25.

    Shih YP, Fong ZH (2008) Flank correction for spiral bevel and hypoid gears on a six-axis CNC hypoid generator. J Mech Des 130:062604-1–062604-11

    Google Scholar 

  26. 26.

    Simon V (2010) Advanced manufacture of spiral bevel gears on CNC hypoid generating machine. J Mech Des 132:031001-1–031001-8

    Google Scholar 

  27. 27.

    Fan Q (2010) Tooth surface error correction for face-hobbed hypoid gears. J Mech Des 132:011004-1–011004-8

    Google Scholar 

  28. 28.

    Fuentes A, Orzaez R, Perez I (2018) Computational approach to design face-milled spiral bevel gear drives with favorable conditions of meshing and contact. Meccanica 53(10):2669–2686

    MathSciNet  Google Scholar 

  29. 29.

    Wang Q, Zhou C, Gui L et al (2018) Optimization of the loaded contact pattern of spiral bevel and hypoid gears based on a kriging model. Mech Mach Theory 122:432–449

    Google Scholar 

  30. 30.

    Han D, Zhigang W, Yuansheng Z et al (2018) A data-driven programming of the human-computer interactions for modeling a collaborative manufacturing system of hypoid gears by considering both geometric and physical performances. Robot Comput Integr Manuf 51:121–138

    Google Scholar 

  31. 31.

    Ding H, Tang J (2018) Six sigma robust multi-objective optimization modification of machine-tool settings for hypoid gears by considering both geometric and physical performances. Appl Soft Comput 70:550–561

    Google Scholar 

  32. 32.

    Ding H, Tang J, Zhong J et al (2016) A hybrid modification approach of machine-tool setting considering high tooth contact performance in spiral bevel and hypoid gears. J Manuf Syst 41:228–238

    Google Scholar 

  33. 33.

    Ding H, Tang J, Zhou Y et al (2017) A multi-objective correction of machine settings considering loaded tooth contact performance in spiral bevel gears by nonlinear interval number optimization. Mech Mach Theory 113:85–108

    Google Scholar 

  34. 34.

    Ding H, Tang J, Shao W et al (2017) Optimal modification of tooth flank form error considering measurement and compensation of cutter geometric errors for spiral bevel and hypoid gears. Mech Mach Theory 118:14–31

    Google Scholar 

  35. 35.

    Ding H, Tang J, Zhong J (2016) An accurate model of high-performance manufacturing spiral bevel and hypoid gears based on machine setting modification. J Manuf Syst 41:111–119

    Google Scholar 

  36. 36.

    Ding H, Wan G, Zhou Y et al (2017) Nonlinearity analysis based algorithm for indentifying machine settings in the tooth flank topography correction for hypoid gears. Mech Mach Theory 113:1–21

    Google Scholar 

  37. 37.

    Arulmozhi P, Chandrasekaran M, Ramesh R (2017) A review of gear parameters optimization. Int J Eng Trends Technol 49(2):92–98

    Google Scholar 

  38. 38.

    Zhou Y, Chen ZC (2015) A new geometric meshing theory for a closed-form vectorrepresentation of the face-milled generated gear tooth surface and its curvature analysis. Mech Mach Theory 83:98–108

    Google Scholar 

  39. 39.

    Zhou Y, Peng S, Liu X et al (2018) A novel method to generate the tooth surface model of face-milled generated spiral bevel gears. Int J Adv Manuf Technol 102:1205–1214

    Google Scholar 

  40. 40.

    Habibi M, Chen ZC (2016) A semi-analytical approach to un-deformed chip boundary theory and cutting force prediction in face-hobbing of bevel gears. Comput Aided Des 73:53–65

    Google Scholar 

  41. 41.

    Habibi M, Chen ZC (2015) A new approach to blade design with constant rake and relief angles for face-hobbing of bevel gears. J Manuf Sci Eng 138(3):031005

    Google Scholar 

  42. 42.

    Habibi M, Chen ZC (2016) An accurate and efficient approach to undeformed chip geometry in face-hobbing and its application in cutting force prediction. J Manuf Sci Eng 138(2):023302

    Google Scholar 

  43. 43.

    Chen ZC, Wasif M (2015) A generic and theoretical approach to programming and post-processing for hypoid gear machining on multi-axis CNC face-milling machines. Int J Adv Manuf Technol 81(1):135–148

    Google Scholar 

  44. 44.

    Rababah M, Wasif M, Ahmed A et al (2018) Accurate machine-settings for the face-milling of hypoid gears. Int Rev Mech Eng 11(12):931–944

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammad Wasif.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rababah, M., Wasif, M. & Iqbal, S.A. Parametric relationship between hypoid gear teeth and accurate face-milling cutter. Adv. Manuf. 8, 537–555 (2020). https://doi.org/10.1007/s40436-019-00286-x

Download citation

Keywords

  • Hypoid gear
  • Pressure angle
  • Spiral angle
  • Accurate blade
  • Cutter head