Skip to main content
Log in

Investigation into the room temperature creep-deformation of potassium dihydrogen phosphate crystals using nanoindentation

  • Published:
Advances in Manufacturing Aims and scope Submit manuscript

Abstract

It has been a tremendous challenge to manufacture damage-free and smooth surfaces of potassium dihydrogen phosphate (KDP) crystals to meet the requirements of high-energy laser systems. The intrinsic issue is whether a KDP crystal can be plastically deformed so that the material can be removed in a ductile mode during the machining of KDP. This study investigates the room temperature creep-deformation of KDP crystals with the aid of nanoindentation. A stress analysis was carried out to identify the creep mechanism. The results showed that KDP crystals could be plastically deformed at the nano-scale. Dislocation motion is responsible for creep-deformation. Both creep rate and creep depth decrease with decrease in peak force and loading rate. Dislocation nucleation and propagation bring about pop-ins in the load-displacement curves during nanoindentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. de Yoreo J, Burnham AK, Whitman PK (2002) Developing KH2PO4 and KD2PO4 crystals for the world’s most power laser. Int Mater Rev 47(3):113–152

    Article  Google Scholar 

  2. Hawley-Fedder RA, Geraghty P, Locke SN et al (2004) NIF pockels cell and frequency conversion crystals. Int Soc Opt Photon. https://doi.org/10.1117/12.538482

    Article  Google Scholar 

  3. Chen WQ, Lu LH, Liang YC et al (2015) Flatness improving method of KDP crystal in ICF system and its implementation in machine tool design. Proc Inst Mech Eng Part E J Process Mech Eng 229(4):327–332

    Article  Google Scholar 

  4. Chen GD, Sun YZ, An CH et al (2016) Measurement and analysis for frequency domain error of ultra-precision spindle in a flycutting machine tool. Proc Inst Mech Eng Part B J Eng Manuf. https://doi.org/10.1177/0954405416673102

    Article  Google Scholar 

  5. Chen GD, Sun YZ, Zhang FH et al (2017) Influence of ultra-precision flycutting spindle error on surface frequency domain error formation. Int J Adv Manuf Technol 88(9–12):3233–3241

    Article  Google Scholar 

  6. Fang T, Lambropoulos JC (2002) Microhardness and indentation fracture of potassium dihydrogen phosphate (KDP). J Am Ceram Soc 85(1):174–178

    Article  Google Scholar 

  7. Kucheyev SO, Siekhaus WJ, Land TA et al (2004) Mechanical response of KD2xH2(1−x)PO4 crystals during nanoindentation. Appl Phys Lett 84(13):2274–2276

    Article  Google Scholar 

  8. Guo XG, Zhang XJ, Tang XZ et al (2013) Nanoindentation on the doubler plane of KDP single crystal. J Semicond 34(3):034001

    Article  Google Scholar 

  9. Lu C, Gao H, Wang J et al (2010) Mechanical properties of potassium dihydrogen phosphate single crystal by the nanoindentation technique. Mater Manuf Processes 25(8):740–748

    Article  Google Scholar 

  10. Joshi MS, Antony AV, Rao PM (1980) Microhardness investigations on potassium dihydrogen phosphate crystals. Cryst Res Technol 15(6):743–746

    Google Scholar 

  11. Zhang Y, Zhang L, Liu M et al (2016) Revealing the mechanical properties of potassium dihydrogen phosphate crystals by nanoindentation. J Mater Res 31(8):1–9

    Article  Google Scholar 

  12. Guin CH, Katrich MD, Savinkov AI et al (1980) Plastic strain and dislocation structure of the KDP group crystals. Cryst Res Technol 15(4):479–488

    Google Scholar 

  13. Peng J, Zhang LC, Lu XC (2013) Elastic-plastic deformation of KDP crystals under nanoindentation. Mater Sci Forum 773–774:705–711

    Article  Google Scholar 

  14. Raman V, Berriche R (1992) An investigation of the creep processes in tin and aluminum using a depth-sensing indentation technique. J Mater Res 7(3):627–638

    Article  Google Scholar 

  15. Mahmudi R, Roumina R, Raeisinia B (2004) Investigation of stress exponent in the power-law creep of Pb-Sb alloys. Mater Sci Eng A 382(1–2):15–22

    Article  Google Scholar 

  16. Fu YJ, Gao ZS, Sun X et al (2000) Effects of anions on rapid growth and growth habit of KDP crystals. Prog Cryst Growth Charact Mater 40(1–4):211–220

    Article  Google Scholar 

  17. Li H, Ngan AHW (2004) Size effects of nanoindentation creep. J Mater Res 19(02):513–522

    Article  Google Scholar 

  18. Wang CL, Zhang M, Nieh TG (2009) Nanoindentation creep of nanocrystalline nickel at elevated temperatures. J Phys D Appl Phys 42(11):115405

    Article  Google Scholar 

  19. Pešička J, Kužel R, Dronhofer A et al (2003) The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels. Acta Mater 51(16):4847–4862

    Article  Google Scholar 

  20. Pelleg J (2013) Mechanical properties of materials. Springer, Dordrecht

    Book  Google Scholar 

  21. William D, Callister J, David G et al (2009) Materials science and engineering: an introduction. Wiley, New Jersey, pp 265–268

    Google Scholar 

  22. Lucas BN, Oliver WC (1999) Indentation power-law creep of high-purity indium. Metall Mater Trans A 30(3):601–610

    Article  Google Scholar 

  23. Hosford WF (1967) Mechanical behavior of materials. Mater Today 20(5):83–85

    Google Scholar 

  24. Meyers MA, Chawla KK (2009) Mechanical behavior of materials. Cambridge University Press, Cambridge, pp 673–674

    MATH  Google Scholar 

  25. Hou N, Zhang Y, Zhang L et al (2016) Assessing microstructure changes in potassium dihydrogen phosphate crystals induced by mechanical stresses. Scripta Mater 113:48–50

    Article  Google Scholar 

  26. Cao Z, Ju X, Yan C et al (2015) Synchrotron micro-XRF study of metal inclusions distribution in potassium dihydrogen phosphate (KDP) induced by ultraviolet laser pulses. Opt Mater Express 5(10):2201–2208

    Article  Google Scholar 

  27. Johnson KL (1970) The correlation of indentation experiments. J Mech Phys Solids 18(2):115–126

    Article  Google Scholar 

  28. Li WB, Henshall JL, Hooper RM et al (1991) The mechanisms of indentation creep. Acta Metal Mater 39(12):3099–3110

    Article  Google Scholar 

  29. Frost HJ, Ashby MF (1982) Deformation mechanism maps: the plasticity and creep of metals and ceramics. Pergammon Press, Oxford

    Google Scholar 

  30. Alden TH (1987) Theory of mobile dislocation density: application to the deformation of 304 stainless steel. Metall Trans 18A:51–62

    Article  Google Scholar 

  31. Wang SH, Chen W (2001) Room temperature creep deformation and its effect on yielding behaviour of a line pipe steel with discontinuous yielding. Mater Sci Eng A 301(2):147–153

    Article  Google Scholar 

  32. Chang L, Zhang L (2009) Mechanical behaviour characterization of silicon and effect of loading rate on pop-in: a nanoindentation study under ultra-low loads. Mater Sci Eng A 506:125–129

    Article  Google Scholar 

  33. Borc J, Sangwal K, Pritula I et al (2017) Investigation of pop-in events and indentation size effect on the (001) and (100) faces of KDP crystals by nanoindentation deformation. Mater Sci Eng A 708:1–10

    Article  Google Scholar 

Download references

Acknowledgement

This work was financially sponsored by the National Nature Science Foundation of China (Grant Nos. 51875137 and 51375122), Heilongjiang Natural Science Foundation (Grant No. E2018033) and Australian Research Council (Grant No. DP170100567).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Hou or Liang-Chi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Hou, N. & Zhang, LC. Investigation into the room temperature creep-deformation of potassium dihydrogen phosphate crystals using nanoindentation. Adv. Manuf. 6, 376–383 (2018). https://doi.org/10.1007/s40436-018-0234-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40436-018-0234-9

Keywords

Navigation