Super twisting observer based full order sliding mode control

Abstract

In this paper, a super twisting observer-based full order sliding mode control is proposed for a non-linear uncertain system. The super twisting observer estimates an \(n{-}\)th system state and the derivative of the \(n{-}\)th system state. It ensures finite convergence of estimation error to zero. The proposed method retains attractive features of full order sliding mode control like finite-time convergence of system states, continuous control, and the system’s full order dynamics when the system is in the sliding mode. The scheme is validated on a 2-DOF helicopter system laboratory setup, and the performance is compared with two well-known observers, i.e., a non-linear extended state observer and a sliding mode observer-based control using two-link manipulator example.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Utkin V, Guldner J, Shi J (2017) Sliding mode control in electro-mechanical systems. CRC Press, Boca Raton

    Google Scholar 

  2. 2.

    Edwards C, Spurgeon S (1998) Sliding mode control: theory and applications. CRC Press, Boca Raton

    Google Scholar 

  3. 3.

    Shtessel Y, Edwards C, Fridman L, Levant A (2014) Sliding mode control and observation. Springer, Berlin

    Google Scholar 

  4. 4.

    Chalanga A, Kamal S, Fridman LM, Bandyopadhyay B, Moreno JA (2016) Implementation of super-twisting control: Super-twisting and higher order sliding-mode observer-based approaches. IEEE Trans Ind Electron 63(6):3677–3685

    Article  Google Scholar 

  5. 5.

    Mobayen S, Tchier F, Ragoub L (2017) Design of an adaptive tracker for n-link rigid robotic manipulators based on super-twisting global nonlinear sliding mode control. Int J Syst Sci 48(9):1990–2002

    MathSciNet  Article  Google Scholar 

  6. 6.

    Bouyahia S, Semcheddine S, Talbi B, Boutalbi O, Terchi Y (2019) An adaptive super-twisting sliding mode algorithm for robust control of a biotechnological process. Int J Dyn Control 1–11

  7. 7.

    Derafa L, Benallegue A, Fridman L (2012) Super twisting control algorithm for the attitude tracking of a four rotors UAV. J Frankl Inst 349(2):685–699

    MathSciNet  Article  Google Scholar 

  8. 8.

    Zargham F, Mazinan A (2019) Super-twisting sliding mode control approach with its application to wind turbine systems. Energy Syst 10(1):211–229

    Article  Google Scholar 

  9. 9.

    Li Z, Zhou S, Xiao Y, Wang L (2019) Sensorless vector control of permanent magnet synchronous linear motor based on self-adaptive super-twisting sliding mode controller. IEEE Access 7:44998–45011

    Article  Google Scholar 

  10. 10.

    Sadeghi R, Madani SM, Ataei M, Kashkooli MA, Ademi S (2018) Super-twisting sliding mode direct power control of a brushless doubly fed induction generator. IEEE Trans Ind Electron 65(11):9147–9156

    Article  Google Scholar 

  11. 11.

    Wu Y, Yu X, Man Z (1998) Terminal sliding mode control design for uncertain dynamic systems. Syst Control Lett 34(5):281–287

    MathSciNet  Article  Google Scholar 

  12. 12.

    Fridman L, Levant A et al (2002) Higher order sliding modes. Sliding Mode Control Eng 11:53–102

    Google Scholar 

  13. 13.

    Laghrouche S, Plestan F, Glumineau A (2007) Higher order sliding mode control based on integral sliding mode. Automatica 43(3):531–537

    MathSciNet  Article  Google Scholar 

  14. 14.

    Feng Y, Han F, Yu X (2014) Chattering free full-order sliding-mode control. Automatica 50(4):1310–1314

    MathSciNet  Article  Google Scholar 

  15. 15.

    Xiang X, Liu C, Su H, Zhang Q (2017) On decentralized adaptive full-order sliding mode control of multiple UAVS. ISA Trans 71:196–205

    Article  Google Scholar 

  16. 16.

    Tang Y (1998) Terminal sliding mode control for rigid robots. Automatica 34(1):51–56

    MathSciNet  Article  Google Scholar 

  17. 17.

    Utkin V (2015) Discussion aspects of high-order sliding mode control. IEEE Trans Autom Control 61(3):829–833

    MathSciNet  Article  Google Scholar 

  18. 18.

    Bahrami M, Naraghi M, Zareinejad M (2018) Adaptive super-twisting observer for fault reconstruction in electro-hydraulic systems. ISA Trans 76:235–245

    Article  Google Scholar 

  19. 19.

    Xiong X, Kikuuwe R, Kamal S, Jin S (2019) Implicit-euler implementation of super-twisting observer and twisting controller for second-order systems. IEEE Trans Circuits Syst II Express Briefs

  20. 20.

    Davila J, Fridman L, Levant A (2005) Second-order sliding-mode observer for mechanical systems. IEEE Trans Autom Control 50(11):1785–1789

    MathSciNet  Article  Google Scholar 

  21. 21.

    Baek S, Baek J, Han S (2019) An adaptive sliding mode control with effective switching gain tuning near the sliding surface. IEEE Access 7:15563–15572

    Article  Google Scholar 

  22. 22.

    Neila MBR, Tarak D (2011) Adaptive terminal sliding mode control for rigid robotic manipulators. Int J Autom Comput 8(2):215–220

    Article  Google Scholar 

  23. 23.

    Xu Z, Zhang T, Bao Y, Zhang H, Gerada C (2019) A nonlinear extended state observer for rotor position and speed estimation for sensorless IPMSM drives. IEEE Trans Power Electron 35(1):733–743

    Article  Google Scholar 

  24. 24.

    Han J (2009) From PID to active disturbance rejection control. IEEE Trans Ind Electron 56(3):900–906

    Article  Google Scholar 

  25. 25.

    Spurgeon SK (2008) Sliding mode observers: a survey. Int J Syst Sci 39(8):751–764

    MathSciNet  Article  Google Scholar 

  26. 26.

    Quanser: 2-DOF helicopter user and control manuals. Markham, Ontario (2006)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ajay Borkar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Borkar, A., Patil, P.M. Super twisting observer based full order sliding mode control. Int. J. Dynam. Control (2021). https://doi.org/10.1007/s40435-021-00757-9

Download citation

Keywords

  • Full order sliding mode control
  • Super twisting observer
  • Non-linear uncertain system