Effect of phase-lags on the transient waves in an axisymmetric functionally graded viscothermoelastic spherical cavity in radial direction

Abstract

This paper aims to present the analysis of transient wave characteristics in a functionally graded viscothermoelastic infinite medium with spherical cavity in the context of generalized thermoelasticity. Continued series solution is used to solve simultanious differential equations for evaluating the field variables. Convergence of the series solution is implemented and investigated that the series of functions are absolutely and uniformly convergent. The formal solution for the field variables are obtained analytically and represented graphically. The effect of grading index and different theories of generalized thermoelasticity are also shown graphically to examine the behavior of the variations of the field variables.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Biot MA (1956) Thermoelasticity and irreversible thermodynamics. J Appl Phys 27(3):240–253

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Stemberg E, Chakravony JG (1959) Thermal shock in an elastic body with a spherical cavity. Q Appl Math 17:205–218

    MathSciNet  Google Scholar 

  3. 3.

    Nowinski J (1962) Transient thermoelastic problem for an infinite medium with a spherical cavity exhibiting temperature-dependent properties. J Appl Mech 29(2):399–407

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Lord HW, Shulman YA (1967) Generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15:299–309

    MATH  Google Scholar 

  5. 5.

    Chandrasekharaiah DS, Murthi HN (1993) Thermoelastic interactions in an unbounded body with a spherical body. J Therm Stress 11:55–70

    Google Scholar 

  6. 6.

    Abouelregal AE, Abo-Dahab SM (2012) Dual-phase-lag model on magneto-thermoelasticity of infinite non-homogeneous solid having a spherical cavity. J Therm Stress 35(9):820–841

    Google Scholar 

  7. 7.

    Othman MIA, Eraki EEM (2016) Generalized magneto-thermoelastic half-space with diffusion under initial stress using three-phase-lag model. Mech Based Des Struct 45:145–159

    Google Scholar 

  8. 8.

    Das P, Kar A, Kanoria M (2013) Analysis of magneto-thermoelastic response in a transversely isotropic hollow cylinder under thermal shock with three-phase-lag effect. J Therm Stress 36(3):239–258

    Google Scholar 

  9. 9.

    Allam MN, Elsibai KA, Abouelregal AE (2010) Magneto-thermoelasticity for an infinite body with a spherical cavity and variable material properties without energy dissipation. Int J Eng Sci 47:2631–2638

    MATH  Google Scholar 

  10. 10.

    Hunter C, Sneddon I, Hill R (1960) Visco-elastic waves in progress in solid mechanics. Wiley, New York

    Google Scholar 

  11. 11.

    Flugge W (1960) Visco-elasticity. Blasdell, London

    Google Scholar 

  12. 12.

    Othman MIA, Ezzat MA, Zaki SA, El-Karamany AS (2002) Generalized thermo-viscoelasctic plane waves with two relaxation times. Int J Eng Sci 40:1329–1347

    MATH  Google Scholar 

  13. 13.

    Eringen AC (1957) Elasto-dynamic problem concerning the spherical cavity. Q J Mech Appl Math 10(3):257–270

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Belardinelli P, Lenci S, Demeio L (2015) Vibration frequency analysis of an electrically-actuated microbeam resonator accounting for thermoelastic coupling effects. Int J Dyn Control 3:157–172

    MathSciNet  Google Scholar 

  15. 15.

    Kar A, Kanoria M (2009) Generalized thermo-visco-elastic problem of a spherical shell with three-phase-lag effect. Appl Math Modeling 33:3287–3298

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Sadovskii VM, Sadovskaya OV, Luk’yanov AA (2014) Radial expansion of a cylindrical or spherical cavity in an infinite porous medium. J Appl Mech Techn Phys 55(4):689–700

    MATH  Google Scholar 

  17. 17.

    Banik S, Kanoria M (2012) Effects of three-phase-lag on two-temperature generalized thermoelasticity for infinite medium with spherical cavity. Appl Math Mech 33(4):483–498

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Youssef HM (2010) Generalized thermoelastic infinite medium with spherical cavity subjected to moving heat source. Comput Math Model 21:212–225

    MATH  Google Scholar 

  19. 19.

    Radgolchin M, Moeenfard H (2018) An analytical approach for modeling nonlinear vibration of doubly clamped functionally graded Timoshenko micro-beams using strain gradient theory. Int J Dyn Control 6:990–1007

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Aouadi M (2017) A problem for an infinite elastic body with a spherical cavity in the theory of generalized thermoelastic diffusion. Int J Solids Struct 44:5711–5722

    MATH  Google Scholar 

  21. 21.

    Peng X, Li X (2009) Thermoelastic analysis of functionally graded annulus with arbitrary gradient. Appl Math Mech Engl Ed 30(10):1211–1220

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Gupta RR (2013) Reflection of waves in visco-thermoelastic transversely isotropic medium. Int J Comput Method Eng Sci Mech 14(2):83–89

    MathSciNet  Google Scholar 

  23. 23.

    Banerjee S, Shaw S, Mukhopadhyay B (2019) Memory response on thermal wave propagation emanating from a cavity in an unbounded elastic solid. J Therm Stress 42(2):294–311

    Google Scholar 

  24. 24.

    Taheri H, Fariborz S, Eslami MR (2004) Thermoelasticity solution of a layer using the Green-Naghdi model. J Therm Stress 27:795–809

    Google Scholar 

  25. 25.

    Othman MIA, Hasona WM, Mansour NT (2015) The effect of magnetic field on generalized thermoelastic medium with two temperature under three-phase-lag model. Multidiscipl Model Mater Struct 11(4):544–557

    Google Scholar 

  26. 26.

    Keles I, Tutuncu N (2011) Exact analysis of axisymmetric dynamic response of functionally graded cylinders (or disks) and spheres. J Appl Mech 78(061014):1–7

    Google Scholar 

  27. 27.

    Abouelrega AE (2011) Generalized thermo elasticity in an infinite non-homogeneous solid having a spherical cavity using DPL model. Appl Math 2:625–632

    MathSciNet  Google Scholar 

  28. 28.

    Sharma JN, Sharma DK, Dhaliwal SS (2012) Three-dimensional free vibration analysis of a viscothermoelastic hollow sphere. Open J Acoust 2:12–24

    Google Scholar 

  29. 29.

    Sharma JN, Sharma DK, Dhaliwal SS (2013) Free vibration analysis of a rigidly fixed viscothermoelastic hollow sphere. Ind J Pure Appl Math 44:559–586

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Sharma DK, Sharma JN, Dhaliwal SS, Walia V (2014) Vibration analysis of axisymmetric functionally graded viscothermoelastic spheres. Acta Mech Sin 30:100–111

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Sharma DK (2016) Free vibrations of homogenous isotropic viscothermoelastic spherical curved plates. J Appl Sci Eng 19:135–148

    Google Scholar 

  32. 32.

    Sharma DK, Mittal H (2019) Analysis of Free vibrations of axisymmetric functionally graded generalized viscothermoelastic cylinder using series solution. J Vib Eng Technol. https://doi.org/10.1007/s42417-019-00178-1

    Article  Google Scholar 

  33. 33.

    Sharma DK, Mittal H, Sharma SR (2019) Forced vibration analysis in axisymmetric functionally graded viscothermoelastic hollow cylinder under dynamic pressure. Proc Natl Acad Sci, India, Sect A. https://doi.org/10.1007/s40010-019-00634-3

    Article  Google Scholar 

  34. 34.

    Pradhan KK, Chakraverty S, Panigrahi SK (2018) Implementation of numerical approximations in studying vibration of functionally graded beams. Int J Dyn Control 6:1023–1046

    MathSciNet  Google Scholar 

  35. 35.

    Othman MIA, Abouelregal AE (2019) Magnetothermoelastic interactions in non-simple medium with a spherical cavity due to time-harmonic varying heat. Multidiscip Model Material Struct 15(5):932–946

    Google Scholar 

  36. 36.

    Sharma DK, Thakur PC, Sarkar N, Bachher M (2020) Vibrations of a nonlocal thermoelastic cylinder with void. Acta Mech. https://doi.org/10.1007/s00707-020-02681-z

    MathSciNet  Article  Google Scholar 

  37. 37.

    Sharma DK, Thakur D, Walia V, Sarkar N (2020) Free vibration analysis of a nonlocal thermoelastic hollow cylinder with diffusion. J Therm Stress. https://doi.org/10.1080/01495739.2020.1764425

    Article  Google Scholar 

  38. 38.

    Peng W, Ma Y, Li C, He T (2020) Dynamic analysis to the fractional order thermoelastic diffusion problem of an infinite body with a spherical cavity and variable material properties. J Therm Stress 43(1):38–54

    Google Scholar 

  39. 39.

    Abo-Dahab SM, Hussein NS, Abd-Alla AM, Alshehri HA (2020) Thermal stresses for a generalized magneto-thermoelasticity on non-homogeneous orthotropic continuum solid with a spherical cavity. Based Des Struct Mech, Mech. https://doi.org/10.1080/15397734.2020.1732223

    Google Scholar 

  40. 40.

    Kuznetsov SV (2020) Similarity and discrepancy of Lamb wave propagation in functionally graded, stratified, and homogeneous media. Int J Dyn Control. https://doi.org/10.1007/s40435-019-00606-w

    Article  Google Scholar 

  41. 41.

    Dhaliwal RS, Singh A (1980) Dynamic coupled thermo elasticity. Hindustan Pub. Corp, New Delhi

    Google Scholar 

  42. 42.

    Tomantschger KW (2002) Series solutions of coupled differential equations with one regular singular point. J Comput Appl Math 140:773–783

    MathSciNet  MATH  Google Scholar 

  43. 43.

    Neuringer JL (1978) The Fröbenius method for complex roots of the indicial equation. Int J Math Edu Sci Technol 9:71–72

    MathSciNet  MATH  Google Scholar 

  44. 44.

    Cullen CG (1972) Matrices and linear transformation, 2nd edn. Addison-Wesley Pub, Reading

    Google Scholar 

  45. 45.

    Tutuncu N, Ozturk M (2001) Exact solutions for stresses in functionally graded pressure vessels. Compos Part B Eng 32:8189–8206

    Google Scholar 

  46. 46.

    Noda N, Jin YH (1993) Thermal stress intensity factor for a crack in a strip of functionally gradient material. Int J Solids Struct 30:1039–1056

    MATH  Google Scholar 

  47. 47.

    Lemaitre J (2001) Hand book of materials behavior models. Deformations of materials, vol I. Academic Press, A Harcourt Science and Technology Press, France

    Google Scholar 

  48. 48.

    Pierce AD (1991) Acoustics: An introduction to its physical principals and applications. American Institute of Physics, New York

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dinesh Kumar Sharma.

Appendix

Appendix

$$ \left. \begin{array}{l} G_{11}^{k} (s_{j} ) = \frac{i\Omega }{{\tilde{\updelta }_{0}^{*} \left\{ {(s_{j} + k + 2)^{2} \, - n^{2} } \right\}}},\,\,\,G_{12}^{k} (s_{j} ) = \frac{{A^{*} \left( {s_{j} + k + 1 + b^{*} } \right)}}{{(s_{j} + k + 2)^{2} \, - n^{2} }}, \hfill \\ G_{21}^{k} (s_{j} ) = \frac{{ - B^{*} \left( {s_{j} + k + 2 + b^{*} } \right)}}{{(s_{j} + k + 2)^{2} - (a^{*} )^{2} }},\,\,\,G_{22}^{k} (s_{j} ) = \frac{{\Omega^{*} \Omega^{2} \tilde{\uptau }_{q} }}{{(s_{j} + k + 2)^{2} - (a^{*} )^{2} }} \hfill \\ \end{array} \right\}\,\,\,\,(k = 1,\,2,\,3, \ldots ). $$
(44)
$$ \left\{ \begin{aligned} D_{11}^{2k} (s_{j} ) = (G_{12}^{2k - 2} (s_{j} )D_{21}^{2k - 1} (s_{j} ) - G_{11}^{2k - 2} (s_{j} )D_{11}^{2k - 2} (s_{j} ))\,\, \hfill \\ D_{22}^{2k} (s_{j} ) = \,\,(G_{21}^{2k - 2} (s_{j} )D_{12}^{2k - 1} (s_{j} ) - G_{22}^{2k - 2} (s_{j} )D_{22}^{2k - 2} (s_{j} ))\, \hfill \\ D_{12}^{2k + 1} (s_{j} ) = \,( - \,\,G_{12}^{2k - 1} (s_{j} )D_{22}^{2k} (s_{j} ) + G_{11}^{2k - 1} (s_{j} )D_{12}^{2k - 1} (s_{j} )) \hfill \\ D_{21}^{2k + 1} (s_{j} ) = ( - \,\,G_{21}^{2k - 1} (s_{j} )D_{11}^{2k} (s_{j} ) + G_{22}^{2k - 1} (s_{j} )D_{21}^{2k - 1} (s_{j} ))\, \hfill \\ \end{aligned} \right.;\,\,\,\,k = 1,\,2,\,3\, \ldots , $$
(45)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharma, D.K., Bachher, M. & Sarkar, N. Effect of phase-lags on the transient waves in an axisymmetric functionally graded viscothermoelastic spherical cavity in radial direction. Int. J. Dynam. Control (2020). https://doi.org/10.1007/s40435-020-00659-2

Download citation

Keywords

  • Viscothermoelasticity
  • Phase-lag
  • Functionally graded material
  • Fröbenius method
  • Three phase lag (TPL) model
  • Spherical cavity