Simultaneous stabilization of single-input nonlinear systems with bounded controls

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


In this paper, the simultaneous stabilization of single-input nonlinear systems with bounded controls is considered. Using the Lyapunov approach and based on Lin–Sontag’s formula for bounded and continuous stabilizers for affine nonlinear systems, a constructive universal formula for the bounded simultaneous stabilization of single-input nonlinear systems is presented explicitly. An illustrative example is given to demonstrate the validity of the method.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Maniar L, Oumoun M, Vivalda JC (2017) On the stabilization of quadratic nonlinear systems. Eur J Control 35:28–33

    MathSciNet  Article  Google Scholar 

  2. 2.

    Moulay E, Perruquetti W (2005) Stabilization of nonaffine systems: a constructive method for polynomial systems. IEEE Trans Autom Control 50:520–526

    MathSciNet  Article  Google Scholar 

  3. 3.

    Rifford L (2002) Semiconcave control-Lyapunov functions and stabilizing feedbacks. SIAM J Control Optim 41:659–681

    MathSciNet  Article  Google Scholar 

  4. 4.

    Zhong J, Cheng D, Hu X (2008) Constructive stabilization for quadratic input nonlinear systems. Automatica 44:1996–2005

    MathSciNet  Article  Google Scholar 

  5. 5.

    Tsinias J (1990) Asymptotic feedback stabilization: a sufficient condition for the existence of control Lyapunov functions. Syst Control Lett 15:441–448

    MathSciNet  Article  Google Scholar 

  6. 6.

    Tsinias J (1991) Existence of control Lyapunov functions and applications to state feedback stabilizability of nonlinear systems. SIAM J Control Optim 29:457–473

    MathSciNet  Article  Google Scholar 

  7. 7.

    Artstein Z (1983) Stabilization with relaxed controls. Nonlinear Anal Theory Methods Appl 7:1163–1173

    MathSciNet  Article  Google Scholar 

  8. 8.

    Sontag ED (1989) A universal construction of Artstein’s theorem on nonlinear stabilization. Syst Control Lett 13:117–123

    MathSciNet  Article  Google Scholar 

  9. 9.

    Lin Y, Sontag ED (1991) A universal formula for stabilization with bounded controls. Syst & Control Lett 16:393–397

    MathSciNet  Article  Google Scholar 

  10. 10.

    Cao YY, Lam J (2001) A computational methods for simultaneous LQ optimal control design via piecewise constant output feedback. IEEE Trans Syst Man Cybern B Cybern 31:836–842

    Article  Google Scholar 

  11. 11.

    Cao YY, Sun YX, Lam J (1999) Simultaneous stabilization via static output feedback and state feedback. IEEE Trans Autom Control 44:1277–1282

    MathSciNet  Article  Google Scholar 

  12. 12.

    Kabamba PT, Yang C (1991) Simultaneous controller design for linear time-invariant systems. IEEE Trans Autom Control 36:106–110

    MathSciNet  Article  Google Scholar 

  13. 13.

    Miller DE, Chen T (2002) Simultaneous stabilization with near-optimal \(H_{\infty }\) performance. IEEE Trans Autom Control 47:1986–1998

    MathSciNet  Article  Google Scholar 

  14. 14.

    Miller DE, Rossi M (2001) Simultaneous stabilization with near-optimal LQR performance. IEEE Trans Autom Control 46:1543–1555

    MathSciNet  Article  Google Scholar 

  15. 15.

    Saeks R, Murray J (1982) Fractional representation, algebraic geometry, and the simultaneous stabilization problem. IEEE Trans Autom Control 27:895–903

    MathSciNet  Article  Google Scholar 

  16. 16.

    Schmitendorf WE, Hollot CC (1989) Simultaneous stabilization via linear state feedback control. IEEE Trans Autom Control 34:1001–1005

    MathSciNet  Article  Google Scholar 

  17. 17.

    Ho-Mock-Qai B, Dayawansa WP (1999) Simultaneous stabilization of linear and nonlinear systems by means of nonlinear state feedback. SIAM J Control Optim 37:1701–1725

    MathSciNet  Article  Google Scholar 

  18. 18.

    Wang Y, Feng G, Cheng D (2007) Simultaneous stabilization of a set of nonlinear port-controlled Hamiltonian systems. Automatica 43:403–415

    MathSciNet  Article  Google Scholar 

  19. 19.

    Wu JL (2010) Simultaneous quadratic stabilization for discrete-time nonlinear systems. IEEE Trans Autom Control 55:1443–1448

    MathSciNet  Article  Google Scholar 

  20. 20.

    Wu JL (2005) Simultaneous stabilization for a collection of single-input nonlinear systems. IEEE Trans Autom Control 50:328–337

    MathSciNet  Article  Google Scholar 

  21. 21.

    Zhang W, Han ZZ, Cai XS (2011) Simultaneous stabilization of a collection of single-input nonlinear systems based on CLFs. Asian J Control 13:582–589

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mohamed Oumoun.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iggidr, A., Oumoun, M. Simultaneous stabilization of single-input nonlinear systems with bounded controls. Int. J. Dynam. Control (2020).

Download citation


  • Simultaneous stabilization
  • Nonlinear systems
  • Control Lyapunov function
  • Bounded state feedback