Structural vibration control using delayed state feedback via LMI approach: with application to chatter stability problems

Abstract

This paper considers the problem of active vibration control in machining processes to prevent dynamic instability and chatter. A method for robust delayed-state feedback control is presented based on Lyapunov–Krasovskii functionals (LKFs). For fast computation and realizability, a partial state feedback approach based on a reduced order model of structural vibration is considered that matches available sensors and captures the main vibratory modes that impact on stability limits. Robustness to neglected dynamics and other model errors are accounted for by a frequency domain description of model uncertainty, augmented with the basic LKF stability condition. The controller synthesis problem is formulated as a set of linear matrix inequality equations that can be solved numerically using convex optimization methods. Evaluations on a hardware-in-the-loop flexible structure test-bed show that feedback controllers optimized via the LKF stability condition provide significant improvements in stability regions compared with optimized PD control and quadratic regulation. The results confirm the methodology as a useful approach for robust chatter control based on combined flexible structure and cutting process models.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Tobias S, Fishwick W (1958) Theory of regenerative machine tool chatter. The Engineer 205:199–203

    Google Scholar 

  2. 2.

    Altintas Y, Budak E (1995) Analytical prediction of stability lobes in milling. CIRP Ann 44(1):357–362

    Article  Google Scholar 

  3. 3.

    Schmitz TL, Smith KS (2009) Machining dynamics. Springer, US

    Google Scholar 

  4. 4.

    da Silva MM, Venter GS, Varoto PS, Coelho RT (2015) Experimental results on chatter reduction in turning through embedded piezoelectric material and passive shunt circuits. Mechatronics 29:78–85

    Article  Google Scholar 

  5. 5.

    Dohner JL, Lauffer JP, Hinnerichs TD, Shankar N, Regelbrugge M, Kwan CM, Xu R, Winterbauer B, Bridger K (2004) Mitigation of chatter instabilities in milling by active structural control. J Sound Vib 269(1–2):197–211

    Article  Google Scholar 

  6. 6.

    Ganguli A, Deraemaeker A, Romanescu I, Horodinca M, Preumont A (2006) Simulation and active control of chatter in milling via a mechatronic simulator. J Vib Control 12(8):817–848

    Article  Google Scholar 

  7. 7.

    Gourc E, Seguy S, Arnaud L (2011) Chatter milling modeling of active magnetic bearing spindle in high- speed domain. Int J Mach Tools Manuf 51(12):928–936

    Article  Google Scholar 

  8. 8.

    Graham E, Mehrpouya M, Nagamune R, Park S (2014) Robust prediction of chatter stability in micro milling comparing edge theorem and LMI. CIRP J Manuf Sci Technol 7(1):29–39

    Article  Google Scholar 

  9. 9.

    Long X, Jiang H, Meng G (2013) Active vibration control for peripheral milling processes. J Mater Process Technol 213(5):660–670

    Article  Google Scholar 

  10. 10.

    Long X, Ren S, Zheng P (2017) Delayed state feedback control for milling process. Proc IUTAM 22:115–122

    Article  Google Scholar 

  11. 11.

    Monnin J, Kuster F, Wegener K (2014) Optimal control for chatter mitigation in milling—part 1: modeling and control design. Control Engineering Practice 24:156–166

    Article  Google Scholar 

  12. 12.

    Monnin J, Kuster F, Wegener K (2014) Optimal control for chatter mitigation in milling—part 2: experimental validation. Control Eng Pract 24:167–175

    Article  Google Scholar 

  13. 13.

    Pesch A, Sawicki J (2012) Application of robust control to chatter attenuation for a high-speed machining spindle on active magnetic bearings. In: Proceedings of the 13th international symposium on magnetic bearings 2012 (ISMB13)

  14. 14.

    van Dijk NJM, van de Wouw N, Doppenberg EJJ, Oosterling HAJ, Nijmeijer H (2012) Robust active chatter control in the high-speed milling process. IEEE Trans Control Syst Technol 20(4):901–917

    Article  Google Scholar 

  15. 15.

    Wang M, Fei R (2001) On-line chatter detection and control in boring based on an electrorheological fluid. Mechatronics 11(7):779–792

    Article  Google Scholar 

  16. 16.

    Chen M, Knospe CR (2007) Control approaches to the suppression of machining chatter using active magnetic bearings. IEEE Trans Control Syst Technol 15(2):220–232

    Article  Google Scholar 

  17. 17.

    Huang T, Chen Z, Zhang HT, Ding H (2015) Active control of an active magnetic bearings supported spindle for chatter suppression in milling process. J Dyn Syst Meas Control 137(11):111003

    Article  Google Scholar 

  18. 18.

    Gu K, Niculescu SI (2003) Survey on recent results in the stability and control of time-delay systems. J Dyn Syst Meas Control 125(2):158

    Article  Google Scholar 

  19. 19.

    Sun J, Chen J (2016) A survey on Lyapunov-based methods for stability of linear time-delay systems. Front Comput Sci 11(4):555–567

    MathSciNet  Article  Google Scholar 

  20. 20.

    Budak E, Altintas Y (1998) Analytical prediction of chatter stability in milling–part II: application of the general formulation to common milling systems. J Dyn Syst Meas Control 120(1):31

    Article  Google Scholar 

  21. 21.

    Zhou K (1998) Essentials of robust control. Prentice Hall, Upper Saddle River

    Google Scholar 

  22. 22.

    Boyd S, Feron E, Ghaoui LE, Balakrishnan V (1994) Linear matrix inequalities in system and control theory. SIAM, Pennsylvania

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by the RGJ-Ph.D. scholarship program under the Thailand Research Fund (Grant No. PHD/0089/2553).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Radom Pongvuthithum.

Appendix

Appendix

Given negative definite matrices, \( Q = Q^{T} \) and \( R = R^{T} \) for which a bilinear matrix inequality (BMI) is defined as \( Q - S^{T} R^{ - 1} S < 0 \) then an equivalent LMI can be obtained according to [22]:

$$ R < 0,Q - S^{T} R^{ - 1} S < 0 \Leftrightarrow \left[ {\begin{array}{*{20}c} Q & {S^{T} } \\ S & R \\ \end{array} } \right] < 0 $$

Thus, considering Eq. (17) in the form

$$ \begin{aligned} {{\Phi }} & = \left[ {\begin{array}{*{20}c} {P\left( {\widetilde{A}_{0} + \widetilde{B}_{u}^{T} K} \right) + \left( {\widetilde{A}_{0} + \widetilde{B}_{u}^{T} K} \right)^{T} P + Q} & {P\widetilde{A}_{1} + P\widetilde{B}_{u} K_{\tau } } & {P\widetilde{B}_{u} } \\ * & { - Q} & 0 \\ * & * & { - \gamma^{2} I} \\ \end{array} } \right] \\ & \quad - \left[ {\begin{array}{*{20}c} {\widetilde{C}_{r} + \widetilde{D}_{r} K} \\ {\widetilde{D}_{r} K_{\tau } } \\ 0 \\ \end{array} } \right]^{T} \left[ { - I} \right]\left[ {\begin{array}{*{20}c} {\widetilde{C}_{r} + \widetilde{D}_{r} K} & {\widetilde{D}_{r} K_{\tau } } & 0 \\ \end{array} } \right] < 0 \\ \end{aligned} $$

leads to the equivalent condition in Eq. (18):

$$ {{\varPsi }} = \left[ {\begin{array}{*{20}c} {P\left( {\widetilde{A}_{0} + \widetilde{B}_{u}^{T} K} \right) + \left( {\widetilde{A}_{0} + \widetilde{B}_{u}^{T} K} \right)^{T} P + Q} & {P\widetilde{A}_{1} + P\widetilde{B}_{u} K_{\tau } } & {P\widetilde{B}_{u} } & {\widetilde{C}_{r}^{T} + K^{T} \widetilde{D}_{r}^{T} } \\ * & { - Q} & 0 & {K_{\tau }^{T} \widetilde{D}_{r}^{T} } \\ * & * & { - \gamma^{2} I} & 0 \\ * & * & * & { - I} \\ \end{array} } \right] < 0. $$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ruttanatri, P., Cole, M.O.T. & Pongvuthithum, R. Structural vibration control using delayed state feedback via LMI approach: with application to chatter stability problems. Int. J. Dynam. Control (2020). https://doi.org/10.1007/s40435-020-00645-8

Download citation

Keywords

  • Flexible structure
  • Vibration control
  • Machining
  • Chatter
  • Time-delay system