Design of adaptive fuzzy gain scheduling fast terminal sliding mode to control the radius of bubble in the blood vessel with application in cardiology


The nonlinear behavior of bubble in the blood vessel restricts the applications of bubble technology in the cardiology. In this paper, a novel engineering solution is proposed to control the radius of the bubble and prevent bubble collapse. For this purpose, the nonlinear dynamics of the bubble in the blood vessel is introduced and then presented into the state-space form. The next part of this paper is devoted to designing a nonlinear control method, where the ultrasonic wave plays the role of control input and the output is the radius of the bubble in the blood vessel. In order to achieve faster, finite-time convergence and higher control precision, fast terminal sliding mode is proposed. The stability of the closed-loop system is ensured through the Lyapunov stability analysis. In order to tackle the chattering problem, the switching gain is adaptively tuned according to the fuzzy rule. In this method, the tracking error and its differential are considered as the inputs and the switching gain is considered as the output of the fuzzy logic system. Simulation results confirm the effectiveness of the proposed control method. Finally, the results of this research are of immediate interest for modern medical applications such as ultrasonic imaging, targeted drug delivery, and cancer treatment.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18


  1. 1.

    Doinikov AA et al (2013) Encapsulated bubble dynamics in imaging and therapy. In: Delale C (ed) Bubble dynamics and shock waves. Springer, Berlin, pp 259–289

    Google Scholar 

  2. 2.

    Pulsipher KW et al (2018) Engineering theranostic microbubbles using microfluidics for ultrasound imaging and therapy: a review. Ultrasound Med Biol 44(12):2441–2460

    Article  Google Scholar 

  3. 3.

    Wang D et al (2018) Bubble-echo based deconvolution of contrast-enhanced ultrasound imaging: simulation and experimental validations. Med Phys 45(9):4094–4103

    Article  Google Scholar 

  4. 4.

    Das D et al (2018) Microfluidics-based microbubbles in methylene blue solution for photoacoustic and ultrasound imaging. In: Photons plus ultrasound: imaging and sensing 2018, International Society for Optics and Photonics

  5. 5.

    Lohse D (2018) Bubble puzzles: from fundamentals to applications. Phys Rev Fluids 3(11):110504

    Article  Google Scholar 

  6. 6.

    Wiedemair W et al (2012) On ultrasound-induced microbubble oscillation in a capillary blood vessel and its implications for the blood–brain barrier. Phys Med Biol 57(4):1019

    Article  Google Scholar 

  7. 7.

    Aryal M et al (2014) Ultrasound-mediated blood–brain barrier disruption for targeted drug delivery in the central nervous system. Adv Drug Deliv Rev 72:94–109

    Article  Google Scholar 

  8. 8.

    O’Reilly MA, Hynynen K (2018) Ultrasound and microbubble-mediated blood–brain barrier disruption for targeted delivery of therapeutics to the brain. Methods Mol Biol 1831:111–119

    Article  Google Scholar 

  9. 9.

    Zandi A et al (2019) Microneedle-based generation of microbubbles in cancer tumors to improve ultrasound-assisted drug delivery. Adv Healthc Mater 8(17):1900613

    Article  Google Scholar 

  10. 10.

    Brett JM, Krelle A (2018) A study of bubble collapse pressure pulse waves from small scale underwater explosions near the water surface. J Sound Vib 435:91–103

    Article  Google Scholar 

  11. 11.

    Phan T-H, Ha C-T, Park W-G (2018) Numerical simulation of bubble collapse between two parallel walls and saturated film boiling on a sphere. Int J Heat Mass Transf 127:116–125

    Article  Google Scholar 

  12. 12.

    Ohashi M, Ichihara M, Toramaru A (2018) Bubble deformation in magma under transient flow conditions. J Volcanol Geotherm Res 364:59–75

    Article  Google Scholar 

  13. 13.

    Garbin V (2019) Collapse mechanisms and extreme deformation of particle-laden interfaces. Curr Opin Colloid Interface Sci 39:202–211

    Article  Google Scholar 

  14. 14.

    Guo B, Chen Y (2019) Adaptive fast sliding mode fault tolerant control integrated with disturbance observer for spacecraft attitude stabilization system. ISA Trans 94:1–9

    Article  Google Scholar 

  15. 15.

    Wang Y, Hou M (2019) Model-free adaptive integral terminal sliding mode predictive control for a class of discrete-time nonlinear systems. ISA Trans 93:209–217

    Article  Google Scholar 

  16. 16.

    Li S, Zhou M, Yu X (2012) Design and implementation of terminal sliding mode control method for PMSM speed regulation system. IEEE Trans Ind Inf 9(4):1879–1891

    Article  Google Scholar 

  17. 17.

    Vincent O et al (2014) The fast dynamics of cavitation bubbles within water confined in elastic solids. Soft Matter 10(10):1455–1461

    Article  Google Scholar 

  18. 18.

    Mobayen S, Baleanu D, Tchier F (2017) Second-order fast terminal sliding mode control design based on LMI for a class of non-linear uncertain systems and its application to chaotic systems. J Vib Control 23(18):2912–2925

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Ma H, Wu J, Xiong Z (2016) Discrete-time sliding-mode control with improved quasi-sliding-mode domain. IEEE Trans Ind Electron 63(10):6292–6304

    Article  Google Scholar 

  20. 20.

    Edwards C, Shtessel Y (2019) Enhanced continuous higher order sliding mode control with adaptation. J Frankl Inst 356(9):4773–4784

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Rahmani M, Ghanbari A, Ettefagh MM (2018) A novel adaptive neural network integral sliding-mode control of a biped robot using bat algorithm. J Vib Control 24(10):2045–2060

    MathSciNet  Article  Google Scholar 

  22. 22.

    Yen VT, Nan WY, Van Cuong P (2018) Recurrent fuzzy wavelet neural networks based on robust adaptive sliding mode control for industrial robot manipulators. Neural Comput Appl 31:6945–6958

    Article  Google Scholar 

  23. 23.

    Zhou C et al (2018) Optimal sliding mode control for an active suspension system based on a genetic algorithm. Algorithms 11(12):205

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Farahmandrad M et al (2019) Design of higher-order sliding mode controller based on genetic algorithm for a cooperative robotic system. Int J Dyn Control 8:269–277

    MathSciNet  Article  Google Scholar 

  25. 25.

    Doinikov AA, Aired L, Bouakaz A (2011) Dynamics of a contrast agent microbubble attached to an elastic wall. IEEE Trans Med Imaging 31(3):654–662

    Article  Google Scholar 

  26. 26.

    Doinikov AA, Zhao S, Dayton PA (2009) Modeling of the acoustic response from contrast agent microbubbles near a rigid wall. Ultrasonics 49(2):195–201

    Article  Google Scholar 

  27. 27.

    Garashchuk IR et al (2019) Hyperchaos and multistability in nonlinear dynamics of two interacting microbubble contrast agents. arXiv:1903.03955

  28. 28.

    Doinikov AA (2004) Mathematical model for collective bubble dynamics in strong ultrasound fields. J Acoust Soc Am 116(2):821–827

    Article  Google Scholar 

  29. 29.

    Doinikov AA, Manasseh R, Ooi A (2005) Time delays in coupled multibubble systems (L). J Acoust Soc Am 117(1):47–50

    Article  Google Scholar 

  30. 30.

    Doinikov AA et al (2019) Nonlinear dynamics of two coupled bubbles oscillating inside a liquid-filled cavity surrounded by an elastic medium. Phys Rev E 99(5):053106

    Article  Google Scholar 

  31. 31.

    Najafi M et al (2016) Approximate analytical solution via ADM and numerical simulation of acoustic cavitation: bubble dynamics. In: Miller R, Liggeri L (eds) Progress in colloid and interface science. CRC; Taylor & Francis, Boca Raton, pp 413–430

    Google Scholar 

  32. 32.

    Hegedűs F, Kalmár C (2018) Dynamic stabilization of an asymmetric nonlinear bubble oscillator. Nonlinear Dyn 94(1):307–324

    Article  Google Scholar 

  33. 33.

    Haghi H, Sojahrood A, Kolios MC (2019) Collective nonlinear behavior of interacting polydisperse microbubble clusters. Ultrason Sonochem 58:104708

    Article  Google Scholar 

  34. 34.

    Dollet B, Marmottant P, Garbin V (2019) Bubble dynamics in soft and biological matter. Annu Rev Fluid Mech 51:331–355

    MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    Martynov S, Stride E, Saffari N (2009) The natural frequencies of microbubble oscillation in elastic vessels. J Acoust Soc Am 126(6):2963–2972

    Article  Google Scholar 

  36. 36.

    Sassaroli E, Hynynen K (2005) Resonance frequency of microbubbles in small blood vessels: a numerical study. Phys Med Biol 50(22):5293

    Article  Google Scholar 

  37. 37.

    Chahine GL, Hsiao C-T (2012) Modeling microbubble dynamics in biomedical applications. J Hydrodyn Ser B 24(2):169–183

    Article  Google Scholar 

  38. 38.

    Badfar E, Ardestani MA (2019) Utilizing sliding mode control for the cavitation phenomenon and using the obtaining result in modern medicine. SN Appl Sci 1(11):1419

    Article  Google Scholar 

  39. 39.

    Badfar E, Ardestani MA, Beheshti MT (2020) Robust nonsingular terminal sliding mode control of radius for a bubble between two elastic walls. J Control Autom Electr Syst 31:283–293

    Article  Google Scholar 

  40. 40.

    Badfar E, Ardestani MA (2019) Robust versus optimal control for the radius of spherical bubble in a perfect incompressible liquid, LMI optimization approach. Int J Dyn Control 8:497–507

    MathSciNet  Article  Google Scholar 

  41. 41.

    Doinikov A, Novell A, Bouakaz A (2012) Dynamics of a contrast microbubble between two elastic walls. In: 2012 IEEE international ultrasonics symposium, IEEE

  42. 42.

    Doinikov AA, Bouakaz A (2013) Ultrasonically induced dynamics of a contrast agent microbubble between two parallel elastic walls. Phys Med Biol 58(19):6797

    Article  Google Scholar 

  43. 43.

    Böhm L, Brehmer M, Kraume M (2016) Comparison of the single bubble ascent in a Newtonian and a non-Newtonian liquid: a phenomenological PIV study. Chem Ing Tec 88(1–2):93–106

    Article  Google Scholar 

  44. 44.

    Liu L et al (2016) Experimental studies on the terminal velocity of air bubbles in water and glycerol aqueous solution. Exp Therm Fluid Sci 78:254–265

    Article  Google Scholar 

  45. 45.

    Azmin M et al (2012) How do microbubbles and ultrasound interact? Basic physical, dynamic and engineering principles. Curr Pharm Des 18(15):2118–2134

    Article  Google Scholar 

  46. 46.

    Abe Y, Kawaji M, Watanabe T (2002) Study on the bubble motion control by ultrasonic wave. Exp Therm Fluid Sci 26(6–7):817–826

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ehsan Badfar.

Appendix: Proof of Lemma 1

Appendix: Proof of Lemma 1

When the system states reach nonlinear sliding surface, the following equation is hold

$$ S\left( X \right) = \dot{e} + c_{1} e + c_{2} e^{{\left( {\frac{q}{p}} \right)}} = 0 $$

Equation (30) can be formulated as

$$ e^{{\left( { - \frac{q}{p}} \right)}} \dot{e} + c_{1} e^{{\left( {1 - \frac{q}{p}} \right)}} = - c_{2} $$

Let \( \alpha = e^{{\left( {1 - \frac{q}{p}} \right)}} \), then Eq. (31) can be rewritten as

$$ \dot{\alpha } + \frac{p - q}{p}c_{1} \alpha = - c_{2} \frac{p - q}{p} $$

The solution of differential Eq. (32) is obtained as follows

$$ \frac{{c_{2} }}{{c_{1} }}exp\left( { - c_{1} \frac{p - q}{p}t_{ep} } \right) + \alpha \left( 0 \right)exp\left( { - c_{1} \frac{p - q}{p}t_{ep} } \right) = - \frac{{c_{2} }}{{c_{1} }} $$

Take the logarithm of Eq. (33) yields

$$ t_{c} = \frac{p}{{c_{1} \left( {p - q} \right)}}{ \ln }\frac{{c_{1} \alpha \left( 0 \right) + c_{2} }}{{c_{2} }} $$

With the help of \( \alpha \left( 0 \right) = \left( {e_{0} } \right)^{{\left( {1 - \frac{q}{p}} \right)}} \), the following result is obtained

$$ t_{c} = \frac{p}{{c_{1} \left( {p - q} \right)}}{ \ln }\frac{{c_{1} \left( {e_{0} } \right)^{{\left( {1 - \frac{q}{p}} \right)}} + c_{2} }}{{c_{2} }} $$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Badfar, E., Ardestani, M.A. Design of adaptive fuzzy gain scheduling fast terminal sliding mode to control the radius of bubble in the blood vessel with application in cardiology. Int. J. Dynam. Control (2020).

Download citation


  • Bubble dynamics
  • Cavitation phenomenon
  • Sliding mode controller
  • Ultrasonic
  • Chattering phenomenon