A robust input shaper for trajectory control of overhead cranes with non-zero initial states


Different control schemes have been implemented over the last decade to suppress the overhead crane payload oscillation in rest-to-rest maneuvers. But in practice, the crane may not be at rest when a payload transition event is initiated. A generalized Zero Vibration with non-zero Initial Conditions (ZVIC) shaper is developed to generate optimal shaping commands for cranes with non-zero initial conditions. For any given set of initial states, this new shaper forces the system to minimize the residual oscillations. Compared to the conventional open-loop input shaping techniques, the proposed ZVIC can effectively reject crane vibrations induced by non-zero onset conditions. A comprehensive sensitivity analysis is performed for systems with different initial conditions and cable length settings. The results confirm that the proposed input shaping technique is insensitive to the initial states of the system.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Manning R, Clement J, Kim D, Singhose W (2009) Dynamics and control of bridge cranes transporting distributed-mass payloads. ASME J Dyn Sys Meas Control 132(1):014505. https://doi.org/10.1115/1.4000657

    Article  Google Scholar 

  2. 2.

    Abdel-Rahman EM, Nayfeh AH, Masoud ZN (2003) Dynamics and control of cranes: a review. J Vib Control 9(7):863

    Article  Google Scholar 

  3. 3.

    Yu J, Lewis F, Huang T (1995) Nonlinear feedback control of a gantry crane. In: Proceedings of 1995 American control ccnference-ACC’95, vol 6 , vol 6, pp 4310–4315

  4. 4.

    Moustafa KA (1994) Feedback control of overhead cranes swing with variable rope length. In: Proceedings of 1994 American control conference-ACC’94, vol 1 (IEEE), vol 1, pp 691–695

  5. 5.

    Ngo QH, Hong KS (2010) Sliding-mode antisway control of an offshore container crane. IEEE/ASME Trans Mechatron 17(2):201

    Article  Google Scholar 

  6. 6.

    Park MS, Chwa D, Eom M (2014) Adaptive sliding-mode antisway control of uncertain overhead cranes with high-speed hoisting motion. IEEE Trans Fuzzy Syst 22(5):1262

    Article  Google Scholar 

  7. 7.

    Mahfouf M, Kee C, Abbod MF, Linkens DA (2000) Fuzzy logic-based anti-sway control design for overhead cranes. Neural Comput Appl 9(1):38

    Article  Google Scholar 

  8. 8.

    Zhang M, Ma X, Rong X, Tian X, Li Y (2016) Adaptive tracking control for double-pendulum overhead cranes subject to tracking error limitation, parametric uncertainties and external disturbances. Mech Syst Signal Process 76:15

    Article  Google Scholar 

  9. 9.

    Smoczek J, Szpytko J (2017) Soft-constrained predictive control for an overhead crane. J KONES 24:291–298

    Google Scholar 

  10. 10.

    Schindele D, Aschemann H (2011) Fast nonlinear MPC for an overhead travelling crane. IFAC Proc Vol 44(1):7963

    Article  Google Scholar 

  11. 11.

    Giacomelli M, Faroni M, Gorni D, Marini A, Simoni L, Visioli A (2018) MPC-PID control of operator-in-the-loop overhead cranes: a practical approach. In 2018 7th International conference on systems and control (ICSC) (IEEE), pp 321–326

  12. 12.

    Ahmad M, Ismail R.R, Ramli M, Ghani N.A, Hambali N (2009) Investigations of feed-forward techniques for anti-sway control of 3-D gantry crane system. In 2009 IEEE symposium on industrial electronics and applications, vol 1 (IEEE), vol 1, pp 265–270

  13. 13.

    Garrido S, Abderrahim M, Gimenez A, Diez R, Balaguer C (2008) Anti-swinging input shaping control of an automatic construction crane. IEEE Trans Autom Sci Eng 5(3):549

    Article  Google Scholar 

  14. 14.

    Gniadek M (2015) Usage of input shaping for crane load oscillation reduction. In: 2015 20th International conference on methods and models in automation and robotics (MMAR) (IEEE), pp 278–282

  15. 15.

    Singh T (2004) Jerk limited input shapers. J Dy Sys Meas Control 126(1):215

    Article  Google Scholar 

  16. 16.

    Singer NC, Seering WP (1990) Preshaping command inputs to reduce system vibration. ASME J Dyn Sys Meas Control 112(1):76–82. https://doi.org/10.1115/1.2894142

    Article  Google Scholar 

  17. 17.

    Kim D, Singhose W (2010) Performance studies of human operators driving double-pendulum bridge cranes. Control Eng Pract 18(6):567

    Article  Google Scholar 

  18. 18.

    Vaughan J, Yano A, Singhose W (2008) Comparison of robust input shapers. J Sound Vib 315(4–5):797

    Article  Google Scholar 

  19. 19.

    Starr GP (1985) Swing-free transport of suspended objects with a path-controlled robot manipulator. ASME J Dyn Sys Meas Control 107(1):97–100. https://doi.org/10.1115/1.3140715

    Article  Google Scholar 

  20. 20.

    Alhazza K.A, Masoud Z.N (2010) A novel wave-form command-shaping control with application on overhead cranes In ASME 2010 dynamic systems and control conference , pp 331–336

  21. 21.

    Alhazza KA (2013) Experimental validation on a continuous modulated wave-form command shaping applied on damped systems. In: Catbas F, Pakzad S, Racic V, Pavic A, Reynolds P (eds) Topics in dynamics of civil structures, vol 4. Conference proceedings of the society for experimental mechanics series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6555-3_48

  22. 22.

    Alghanim K, Mohammed A, Andani MT (2019) An input shaping control scheme with application on overhead cranes. Int J Nonlinear Sci Numer Simul 20(5):561

    MathSciNet  Article  Google Scholar 

  23. 23.

    Mohammed A, Alghanim K, Andani MT (2019) An optimized non-linear input shaper for payload oscillation suppression of crane point-to-point maneuvers. Int J Dyn Control 7(2):567

    MathSciNet  Article  Google Scholar 

  24. 24.

    Alhazza KA, Hasan AM, Alghanim KA, Masoud ZN (2014) An iterative learning control technique for point-to-point maneuvers applied on an overhead crane. Shock Vib 2014:261509. https://doi.org/10.1155/2014/261509

    Article  Google Scholar 

  25. 25.

    Chang P.H, Park J, Park J.Y Commandless input shaping technique. In: Proceedings of the 2001 American control conference.(Cat. No. 01CH37148)

  26. 26.

    Newman D, Vaughan J (2017) Reduction of transient payload swing in a harmonically excited boom crane by shaping luff commands. In: ASME 2017 dynamic systems and control conference

  27. 27.

    Newman D, Vaughan J (2017) Command shaping of a boom crane subject to nonzero initial conditions. In: 2017 IEEE conference on control technology and applications (CCTA), pp 1189–1194

  28. 28.

    Huey JR, Sorensen KL, Singhose WE (2008) Useful applications of closed-loop signal shaping controllers. Control Eng Pract 16(7):836

    Article  Google Scholar 

  29. 29.

    Staehlin U, Singh T (2013) Design of closed-loop input shaping controllers. In: Proceedings of the 2003 American control conference, 2003., vol 6 (IEEE, 2003), vol 6, pp 5167–5172

  30. 30.

    Park JY, Chang PH (2004) Vibration control of a telescopic handler using time delay control and commandless input shaping technique. Control Eng Pract 12(6):769

    Article  Google Scholar 

  31. 31.

    Veciana JM, Cardona S, Català P (2013) Minimizing residual vibrations for non-zero initial states: application to an emergency stop of a crane. Int J Precis Eng Manuf 14(11):1901

    Article  Google Scholar 

  32. 32.

    Dhanda A, Vaughan J, Singhose W (2016) Vibration reduction using near time-optimal commands for systems with nonzero initial conditions. J Dyn Syst Meas Control 138(4):041006. https://doi.org/10.1115/1.4032064

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Abdullah Mohammed.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohammed, A., Alghanim, K. & Andani, M.T. A robust input shaper for trajectory control of overhead cranes with non-zero initial states. Int. J. Dynam. Control 9, 230–239 (2021). https://doi.org/10.1007/s40435-020-00631-0

Download citation


  • Input shaping
  • Shaped commands
  • Overhead crane
  • Non-zero initial conditions