Some necessary conditions on output redefinition in non-minimum phase systems


This paper derives some necessary conditions for output redefinition. It is shown that for defining a new output it should contain at least one linear term to have a well-defined relative degree. In addition, it is presented that by a static transformation on system output, relative degree and the zero dynamics of the system are not changed. Therefore, output signal is not enough for output redefinition to convert a non-minimum phase system to a minimum phase system and availability of required state variables or at least observability of the states is necessary.

This is a preview of subscription content, access via your institution.


  1. 1.

    Khalil HK (1996) Nonlinear systems. Prentice-Hall, New Jersey

    Google Scholar 

  2. 2.

    Kokotovic PV, Arcak M (2001) Constructive nonlinear control: a historical perspective. Automatica 37(5):637–662

    MathSciNet  Article  Google Scholar 

  3. 3.

    Massera JL (1956) Contributions to stability theory. Ann Math 64:182–206

    MathSciNet  Article  Google Scholar 

  4. 4.

    DeCarlo RA, Zak SH, Matthews GP (1988) Variable stucture control of nonlinear mulivariable systems: a tutorial. In: IEEE, pp 212–232

  5. 5.

    Isidori A (1995) Nonlinear control systems, 3rd edn. Springer, London

    Google Scholar 

  6. 6.

    Qui L, Davison EJ (1993) Performance limitations of nonminimum phase systems in the servomechanism problem. Automatica 29:337–349

    MathSciNet  Article  Google Scholar 

  7. 7.

    Utkin VI (1992) Sliding modes in control and optimization. Springer, Berlin

    Google Scholar 

  8. 8.

    Chang J-L (2011) Dynamic output feedback sliding mode control for nonminimum phase linear systems with disturbance attenuation. Asian J Control 13(4):562–569

    MathSciNet  Article  Google Scholar 

  9. 9.

    Al-Hiddabi SA, McClamroch NH (2002) Aggressive longitudinal aircraft trajectory tracking using nonlinear control. J Guid Control Dyn 25(1):26–32

    Article  Google Scholar 

  10. 10.

    Hauser J, Sastry S, Meyer G (1992) Nonlinear control design for slightly nonminimum phase systems: application to V/STOL aircraft. Automatica 28(4):665–679

    MathSciNet  Article  Google Scholar 

  11. 11.

    Kwon D, Book WJ (1994) A time-domain inverse dynamic tracking control of a single-link flexible manipulator. ASME J Dyn Syst Meas Control 116(2):193–200

    Article  Google Scholar 

  12. 12.

    Lin F, Zhang W, Brandt R (1999) Robust hovering control of a PVTOL aircraft. IEEE Trans Control Syst Technol 7(3):343–351

    Article  Google Scholar 

  13. 13.

    Zhang Y, Zhu Q, Xiong R (2018) Precise tracking for continuous-time non-minimum phase systems. Asian J Control 21(5):2395–2406

    MathSciNet  Article  Google Scholar 

  14. 14.

    Devasia S, Chen D, Paden B (1996) Nonlinear inversion-based output tracking. IEEE Trans Autom Control 41:930–943

    MathSciNet  Article  Google Scholar 

  15. 15.

    Kinosita K, Sogo T, Adachi N (2002) Iterative learning control using adjoint systems and stable inversion. Asian J Control 4(1):60–67

    Article  Google Scholar 

  16. 16.

    Zhu Q, Zhang Y, Xiong R (2018) Stable inversion based precise tracking for periodic systems. Asian J Control 22:217

    MathSciNet  Article  Google Scholar 

  17. 17.

    Moallem M, Khorasani K, Patel RV (1996) Tip position tracking of flexible multi-link manipulators: an integral manifold approach. In: Paper presented at the IEEE international conference on robotics and automation, Minneapolis, Minnesota

  18. 18.

    Moallem M, Patel RV, Khorasani K (1996) An inverse dynamics control strategy for tip position tracking of flexible multi-link manipulators. In: Paper presented at the international federation of automatic control (IFAC) World Congress, San Francisco

  19. 19.

    Wu W (1999) Adaptive nonlinear control of non-minimum phase processes. Chem Eng Sci 54:3815–3829

    Article  Google Scholar 

  20. 20.

    Cheng D (2000) Stabilization of a class of nonlinear non-minimum phase systems. Asian J Control 2(2):132–139

    Article  Google Scholar 

  21. 21.

    Gopalswamy S, Hedrick JK (1993) Tracking nonloinear non-minimum phase systems using sliding control. Int J Control 57(5):1141–1158

    Article  Google Scholar 

  22. 22.

    Slotine JE, Li W (1991) Applied nonlinear control. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  23. 23.

    Wang D, Vidyasagar M (1989) Transfer functions for a single flexible link. In: Proceedings of IEEE international conference on robotics and automation, pp 1042–1047

  24. 24.

    Benvenuti L, Benedetto DIMD, Grizzle JW (1994) Approximate output tracking for nonlinear non-minimum phase systems with an application to flight control. Int J Robust Nonlinear Control 4(3):397–414

    Article  Google Scholar 

  25. 25.

    Ho D, Hedrick JK (2015) Control of nonlinear non-minimum phase systems with input-output linearization. In: Paper presented at the American Control Conference, Chicago

  26. 26.

    Hu A, Sadegh N (2001) Nonlinear non-minimum phase output tracking via output redefinition and learning control. In: Proceedings of the American control conference, Arlington, VA, pp 4264–4269

  27. 27.

    Talebi HA, Patel RV, Khorasani K (2001) Control of flexible-link manipulators using neural networks. Springer, London

    Google Scholar 

  28. 28.

    Yang H, Krishnon H, Angi MH (2000) Tip-trajectory tracking control of single-link flexible robots by output redefinition. In: IEE proceedings -control theory and applications, pp 580–587

  29. 29.

    Jahangiri F, Talebi HA, Menhaj MB, Ebenbauer C (2018) A novel scheme for output redefinition in feedback passivation of nonlinear systems. Int J Syst Sci 49:1

    Article  Google Scholar 

  30. 30.

    Enns D, Bugajski DJ, Hendrick RC, Stein G (1994) dynamic inversion: an evolving methodology for flight control design. Int J Control 59(1):71–91

    Article  Google Scholar 

  31. 31.

    Necsulescu D, Jiang Y-W, Kim B (2007) Neural network based feedback linearization control of an unmanned aerial vehicle. Int J Autom Comput 4(1):71–79

    Article  Google Scholar 

  32. 32.

    Shao-lei Z, Yu-ting X, Zuo-e F, Peng-cheng H (2010) Design of an adaptive fuzzy sliding mode controller for uncertain anti-ship missiles. In: Paper presented at the 2010 international conference on computer design and applications

  33. 33.

    Jahangiri F, Talebi HA, Menhaj MB, Ebenbauer C, Allgoewer F (2014) A new method for finding minimum phase outputs. In: Paper presented at the 53rd IEEE conference on decision and control, California, December 2014

  34. 34.

    Jahangiri F, Talebi HA, Menhaj MB, Ebenbauer C (2016) A new approach for minimum phase output definition. Int J Syst Sci 48(2):264–271

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Fatemeh Jahangiri.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jahangiri, F., Talebi, H.A. & Menhaj, M.B. Some necessary conditions on output redefinition in non-minimum phase systems. Int. J. Dynam. Control 9, 173–178 (2021).

Download citation


  • Output redefinition
  • Relative degree
  • Zero dynamics
  • Output signal
  • Non-minimum phase systems