Skip to main content
Log in

Adaptive hierarchical sliding mode control using neural network for uncertain 2D overhead crane

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This paper proposes an adaptive hierarchical sliding mode control method based on radial basis function neural network for an uncertain 2D overhead crane system. A second-level sliding surface is defined by a linear combination of two subsystem’s sliding surfaces. A radial basis function neural network is adopted to approximate the unknown dynamic model. The control law is designed in order to ensure the stability of sliding surfaces and an updated law for neural network’s weight matrices is derived from a candidate of Lyapunov function. Simulation results show that the effectiveness of the proposed control scheme, such as smaller swing and accurate position as desired. Besides that, the controller is installed in micro-controller for the actual model in laboratory and experiment result evaluate the applicability of this control design in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fang Y, Zergeroglu E, Dixon WE, Dawson DM (2003) Nonlinear coupling control laws for an overhead crane system. IEEE/ASME Trans Mechatron 8(3):418–423

    Article  Google Scholar 

  2. Yu J, Lewis FL, Huang T (1995) Nonlinear feedback control of a gantry crane. In: Proceedings of 1995 American control conference, pp 4310–4315

  3. Park H, Chwa D, Hong K (2007) A feedback linearization control of container cranes: varying rope length. Int J Control Autom Syst 5(4):379

    Google Scholar 

  4. Tuan LA, Kim GH, Lee SG (2012) Partial Feedback linearization control of the three dimensional overhead crane. In: IEEE International Conference on Automation Science and Engineering, pp 1198–1203

  5. Le TA, Kim GH, Kim MY, Lee SG (2012) Partial feedback linearization control of overhead cranes with varying cable lengths. Int J Precis Eng Manuf 13(4):501–507

    Article  Google Scholar 

  6. Cho S-K, Lee H-H (2002) A fuzzy-logic antiswing controller for three-dimensional overhead cranes. ISA Trans 41(2):235–243

    Article  Google Scholar 

  7. Mahfouf M, Kee CH, Abbod MF, Linkens DA (2000) Fuzzy logic-based anti-sway control design for overhead cranes. Neural Comput Appl 9(1):38–43

    Article  Google Scholar 

  8. Wang L, Zhang H, Kong Z (2015) Anti-swing control of overhead crane based on double fuzzy controllers. In: Proceedings of 27th Chinese Control Decision Conference, pp 981–986

  9. Shyu KK, Jen CL, Shang LJ (2005) Design of sliding-mode controller for anti-swing control of overhead cranes. In: 31st Annual Conference of IEEE Industry Electronics Society, pp 147–152

  10. Qian D, Yi J, Zhao D (2011) Control of overhead crane systems by combining sliding mode with fuzzy regulator. IFAC Proc 44(1):9320–9325

    Article  Google Scholar 

  11. Tuan LA, Kim JJ, Lee SG, Lim TG, Nho LC (2014) Second-order sliding mode control of a 3D overhead crane with uncertain system parameters. Int J Precis Eng Manuf 15(5):811–819

    Article  Google Scholar 

  12. Ngo QH, Hong KS (2012) Sliding-mode antisway control of an offshore container crane. IEEE/ASME Trans Mechatron 17(2):201–209

    Article  Google Scholar 

  13. Bartolini G, Pisano A, Usai E (2002) Second-order sliding-mode control of container cranes. Automatica 38(10):1783–1790

    Article  MathSciNet  MATH  Google Scholar 

  14. Xu W, Zheng X, Liu Y, Zhang M, Luo Y (2015) Adaptive dynamic sliding mode control for overhead cranes. In: Proceedings of the 34th Chinese Control Conference, pp 3287–3292

  15. Wang W, Yi J, Zhao D, Liu D (2004) Design of a stable sliding-mode controller for a class of second-order underactuated systems. IEEE Proc Control Theory Appl 151(6):243–250

    Article  Google Scholar 

  16. Qian D, Yi J, Zhao D (2008) Hierarchical sliding mode control for a class of SIMO underactuated system. Control Cybern 37(1):160–175

    Google Scholar 

  17. Wang W, Liu XD, Yi JQ (2007) Structure design of two types of sliding-mode controllers for a class of under-actuated mechanical systems. IET Control Theory Appl 1(1):163–172

    Article  MathSciNet  Google Scholar 

  18. Qian D, Liu X (2012) Adaptive control based on hierarchical sliding mode for under-actuated systems. Appl Math Inf Sci 1364(4):1050–1055

    Google Scholar 

  19. Singh AM, Hoang VT, Ha QP (2016) Fast terminal sliding mode control for gantry cranes. In: International symposium on automation and robotics in construction

  20. Tuan LA, Lee S-G, Nho LC, Kim DH (2013) Model reference adaptive sliding mode control for three dimensional overhead cranes. Int J Precis Eng Manuf 14(8):1329–1338

    Article  Google Scholar 

  21. Yang JH, Yang KS (2007) Adaptive coupling control for overhead crane systems. Mechatronics 17(2–3):143–152

    Article  Google Scholar 

  22. Ji G (2012) Adaptive neural network dynamic surface control for perturbed nonlinear time-delay systems. Int J Autom Comput 9(April):135–141

    Article  Google Scholar 

  23. Park MS, Chwa D, Hong SK (2008) Antisway tracking control of overhead cranes with system uncertainty and actuator nonlinearity using an adaptive fuzzy sliding-mode control. IEEE Trans Ind Electron 55(11):3972–3984

    Article  Google Scholar 

  24. Park M, Chwa D, Eom M (2014) Adaptive sliding-mode antisway control of uncertain overhead cranes with high-speed hoisting motion. IEEE Trans Fuzzy Syst 22(5):1262–1271

    Article  Google Scholar 

  25. Hung LC, Chung HY (2007) Decoupled control using neural network-based sliding-mode controller for nonlinear systems. Expert Syst Appl 32(4):1168–1182

    Article  Google Scholar 

  26. Hung LC, Chung HY (2007) Decoupled sliding-mode with fuzzy-neural network controller for nonlinear systems. Int J Approx Reason 46(1):74–97

    Article  MathSciNet  MATH  Google Scholar 

  27. Huang S-J, Huang K-S, Chiou K-C (2003) Development and application of a novel radial basis function sliding mode controller. Mechatronics 13(4):313–329

    Article  Google Scholar 

  28. Nguyen NP, Ngo QH, Nguyen CN (2017) Adaptive sliding mode control using radial basis function network for container cranes. In: 2017 17th international conference on control, automation and systems, pp 1628–1633

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuan Anh Phan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, H.X., Nguyen, T.V., Le, A.V. et al. Adaptive hierarchical sliding mode control using neural network for uncertain 2D overhead crane. Int. J. Dynam. Control 7, 996–1004 (2019). https://doi.org/10.1007/s40435-019-00524-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-019-00524-x

Keywords

Navigation