Skip to main content
Log in

Synchronization analysis for master and slave system under communication time delay using fractional-order PD\(^{\alpha }\) control

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This paper presents a fractional-order PD\(^{\alpha }\) control method for the master and slave system under communication time delay. First, a fractional-order PD\(^{\alpha }\) controller is designed based on the dynamic model of the master and slave system in order to improve the precision and flexibility of operation. Then, the associated characteristic equation for the fractional-order system with time delay is analyzed by taking the time delay as parameter, and the sufficient conditions of asymptotic stability are established to ensure the synchronization of the considered system from eigenvalues point of view. Furthermore, the maximum upper bound of time delay is derived by considering the distribution of roots for characteristic equation. Finally, three numerical simulation examples are given to illustrate the accuracy of conditions and the validity of the novel control architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhai DH, Xia YQ (2015) Robust saturation-based control of bilateral teleoperation without velocity measurements. Int J Robust Nonlinear Control 25(15):2582–2607

    Article  MathSciNet  MATH  Google Scholar 

  2. Zhai DH, Xia YQ (2016) Adaptive control for teleoperation system with varying time-delays and input saturation constraints. IEEE Trans Ind Electron 63(11):6921–6929

    Article  Google Scholar 

  3. Li ZJ, Xia YQ, Cao XQ (2013) Adaptive control of bilateral teleoperation with unsymmetrical time-varying delays. Int J Innov Comput Inf Control 9(2):753–767

    Google Scholar 

  4. Li ZJ, Xia YQ, Sun FC (2014) Adaptive fuzzy control for multilateral cooperative teleoperation of multiple robotic manipulators under random network-induced delays. IEEE Trans Fuzzy Syst 22(2):437–450

    Article  Google Scholar 

  5. Li ZJ, Xia YQ, Wang DH, Zhai DH, Su CY, Zhao XG (2016) Neural network-based control of networked trilateral teleoperation with geometrically unknown constraints. IEEE Trans Cybern 46(5):1051–1064

    Article  Google Scholar 

  6. Huang PF, Liu ZX (2015) Space teleoperation technology. National Defense Industry Press, Beijing

    Google Scholar 

  7. Podlubny I (1999) Fractional differential equations. Academie Press, New York

    MATH  Google Scholar 

  8. Monje CA, Chen YQ, Vinagre BM, Xue D, Feliu-Batlle V (2010) Fractional-order systems and controls: fundamentals and applications. Springer, London

    Book  MATH  Google Scholar 

  9. Matouk AE (2009) Stability conditions, hyperchaos and control in a novel fractional order hyperchaotic system. Phys Lett A 373(25):2166–2173

    Article  MATH  Google Scholar 

  10. Wang H, Yu Y, Wen G, Zhang S (2015) Stability analysis of fractional-order neural networks with time delay. Neural Process Lett 42(2):479–500

    Article  Google Scholar 

  11. Huang CD, Cao JD, Xiao M (2016) Hybrid control on bifurcation for a delayed fractional gene regulatory network. Chaos Solitons Fractals 87:19–29

    Article  MathSciNet  MATH  Google Scholar 

  12. Song P, Zhao HY, Zhang XB (2016) Dynamic analysis of a fractional order delayed predator–prey system with harvesting. Theory Biosci 135(1–2):59–72

    Article  Google Scholar 

  13. Huang CD, Cao JD, Xiao M, Alsaedi A, Alsaadi FE (2017) Controlling bifurcation in a delayed fractional predator–prey system with incommensurate orders. Appl Math Comput 293:293–310

    MathSciNet  MATH  Google Scholar 

  14. Hua CC, Liu D, Guan XP (2014) Necessary and sufficient stability criteria for a class of fractional-order delayed systems. IEEE Trans Circuits Syst II: Express Briefs 61(1):59–63

    Article  Google Scholar 

  15. Hua CC, Li Y, Liu D, Guan X (2016) Stability analysis for fractional-order PD controlled delayed systems. J Franklin Inst 353(13):3118–3132

    Article  MathSciNet  MATH  Google Scholar 

  16. Lazarević MP, Spasić AM (2009) Finite-time stability analysis of fractional order time-delay systems: Gronwall’s approach. Math Comput Model 49(3):475–481

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhao HY, Zhang XB, Huang XX (2015) Hopf bifurcation and spatial patterns of a delayed biological economic system with diffusion. Appl Math Comput 266:462–480

    MathSciNet  MATH  Google Scholar 

  18. Zeng XC, Xiong ZL, Wang CJ (2016) Hopf bifurcation for neutral-type neural network model with two delays. Appl Math Comput 282:17–31

    MathSciNet  MATH  Google Scholar 

  19. Vu TNL, Lee M (2013) Analytical design of fractional-order proportional-integral controllers for time-delay processes. ISA Trans 52(5):583–591

    Article  Google Scholar 

  20. Malek H, Luo Y, Chen YQ (2013) Identification and tuning fractional order proportional integral controllers for time delayed systems with a fractional pole. Mechatronics 23(7):746–754

    Article  Google Scholar 

  21. Sharma R, Rana KPS, Kumar V (2014) Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator. Expert Syst Appl 41(9):4274–4289

    Article  Google Scholar 

  22. Kumar V, Rana KPS (2017) Nonlinear adaptive fractional order fuzzy PID control of a2-link planar rigid manipulator with payload. J Frankl Inst 354(2):993–1022

    Article  MATH  Google Scholar 

  23. Pakzad MA, Pakzad S, Nekoui MA (2015) Exact method for the stability analysis of time delayed linear-time invariant fractional-order systems. IET Control Theory Appl 9(16):2357–2368

    Article  MathSciNet  Google Scholar 

  24. Olgac N, Sipahi R (2002) An exact method for the stability analysis of time-delayed linear time-invariant (LTI) systems. IEEE Trans Autom Control 47(5):793–797

    Article  MathSciNet  MATH  Google Scholar 

  25. Hamamci SE, Koksal M (2010) Calculation of all stabilizing fractional-order PD controllers for integrating time delay systems. Comput Math Appl 59(5):1621–1629

    Article  MathSciNet  MATH  Google Scholar 

  26. Nojavanzadeh D, Badamchizadeh M (2016) Adaptive fractional-order non-singular fast terminal sliding mode control for robot manipulators. IET Control Theory Appl 10(13):1565–1572

    Article  MathSciNet  Google Scholar 

  27. Shi Z, Huang XX, Tan Q, Hu TJ (2015) Fractional-order PID control method for space teleoperation. In: IEEE international conference on multimedia big data (BigMM), pp 216–219

  28. Shi Z, Huang XX, Tan Q, Hu TJ (2016) Fractional-order PID control for teleoperation of a free-flying space robot. Control Theory Appl 33(6):800–808

    MATH  Google Scholar 

  29. Yang X, Hua CC, Yan J, Guan XP (2016) An exact stability condition for bilateral teleoperation with delayed communication channel. IEEE Trans Syst Man Cybern Syst 46(3):434–439

    Article  Google Scholar 

  30. Lazarević MP (2006) Finite time stability analysis of PD\(^{\alpha }\) fractional control of robotic time-delay systems. Mech Res Commun 33(2):269–279

    Article  MathSciNet  MATH  Google Scholar 

  31. Viola J, Angel L (2015) Identification, control and robustness analysis of a robotic system using fractional control. IEEE Latin Am Trans 13(5):1294–1302

    Article  Google Scholar 

  32. Podlubny I (1999) Fractional-order systems and PI\(^{\lambda }\)D\(^{\mu }\) controllers. IEEE Trans Autom Control 44(1):208–214

    Article  MathSciNet  MATH  Google Scholar 

  33. Li CP, Zhao ZG (2009) Asymptotical stability analysis of linear fractional differential systems. J Shanghai Univ (English Edition) 13:197–206

    Article  MathSciNet  MATH  Google Scholar 

  34. Deng WH, Li CP, Lü JH (2007) Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn 48(4):409–416

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yude Ji.

Additional information

This work is supported by the Foundation of Hebei Education Department (QN2018006) and the Five Platform Foundation of Hebei University of Science and Technology (2015PT21)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y. Synchronization analysis for master and slave system under communication time delay using fractional-order PD\(^{\alpha }\) control. Int. J. Dynam. Control 7, 525–535 (2019). https://doi.org/10.1007/s40435-018-0475-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-018-0475-2

Keywords

Navigation