Skip to main content
Log in

Wavelet network for in-loop identification and control of frictional nonlinear systems

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

We propose a novel wavelet network for closed-in-loop identification and control of systems containing nonlinear coulomb friction. Usually an actual system contains both linear and nonlinear dynamics, hence my wavelet network structure yields two parts: (a) nonlinear connection from hidden (middle) layer neurons, (b) linear direct connections from input regressors to output neuron. The wavelet network identifier has appropriate dynamical functional links to identify the friction of the nonlinear system. Moreover, wavelet network controller employs the identified parameters for on-line training to compute appropriate control signal. The simulation results reveal that with this control strategy, the system can track even a periodic input reference signal successfully. In addition, in the presence of external disturbance and plant parameters variations, the compensated system operates facilitative. Furthermore, this identification and control strategy can eliminate chattering in spite of coulomb friction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. de Wit CC, Olsson H, Åstrom KJ, Lischinsky P (1995) A new model for control systems with friction. IEEE Trans Autom Control 40(3):412–419

    MathSciNet  Google Scholar 

  2. Harnoy A, Friedland B, Chon S (2008) Modelling and measuring friction effects. IEEE Control Syst Mag 28(6):82–91

    Article  MathSciNet  Google Scholar 

  3. Olsson H, Åstrom KJ, Canudas de Wit C, Gäfvert M, Lischinsky P (1998) Friction models and friction compensation. Eur J Control 4:176–195

    Article  Google Scholar 

  4. Harnoy A, Friedland B (1994) Dynamic friction model of lubricatioed surfaces for precise motion control. Tribol Trans 37(3):608–614

    Article  Google Scholar 

  5. Cordova J, Yu W (2012) Two types of haar wavelet neural network for nonlinear system identification. Neural Process Lett 35:283–300

    Article  Google Scholar 

  6. Lu C-H (2011) Wavelet fuzzy neural network for identification and predictive control of dynamics systems. IEEE Trans Ind Electron 58:3046–3058

    Article  Google Scholar 

  7. Kulkarni A, Kumar A (2012) Dynamic recurrent neural network observer based tracking control for a class of uncertain nonaafine systems. Int J Comput Netw Inf Secur 4:24–30

    Google Scholar 

  8. Wei S, Wang Y, Zuo Y (2012) Wavelet neural network robust control of farm transmission line deciding robot manipulator. Comput Stand Interfaces 34:327–333

    Article  Google Scholar 

  9. Sharma M, Verma A (2012) Wavelet neural network observer based adaptive tracking control for a class of uncertain nonlinear delayed systems using reinforcement learning. Int J Intell Syst Appl 4:28–34

    Google Scholar 

  10. Sharma M, Verma A (2010) Adaptive tracking control for a class of uncertain non-affine delayed systems subjected to input constraints using self recurrent wavelet neural network. In: International conference on advances in recent technologies in communication and computing, pp 60–65

  11. Hsu CF, Cheng KH, Lee TT (2009) Robust wavelet based adaptive neural network controller design with a fuzzy compensator. Neurocomputing 73:423–431

    Article  Google Scholar 

  12. Zekri M, Sadri S, Sheikholeslam F (2008) Adaptive fuzzy wavelet network control design for nonlinear systems. Fuzzy Sets Syst 159:2668–2695

    Article  MathSciNet  Google Scholar 

  13. Xu JX, Tan Y (2007) Nonlinear adaptive wavelet control using constructive wavelet networks. IEEE Trans Neural Netw 18:115–127

    Article  Google Scholar 

  14. Amin J, Friedland B, Harnoy A (1997) Implementation of a friction estimation and compensation technique. IEEE Control Syst Mag 17(4):1525–1530

    Google Scholar 

  15. Jang JO (2000) A parallel neuro-controller for DC motors containing nonlinear friction. Neurocomputing 30:233–248

    Article  Google Scholar 

  16. Tafazoli S, de Silva CW, Lawrence PD (1998) Tracking control of an electrohydraulic manipulator in the presence of friction. IEEE Trans Control Syst Technol 6(3):401–411

    Article  Google Scholar 

  17. Olsson H (1996) Control systems with friction. Ph.D. Dissertation, Department of Automatic Control, University of Lund, Sweden

  18. Gao X, Zhao W, Huang J, Jia Q, Sun H, Wang Y (2016) On-line parameter identification and control parameters optimization of robot joints with unknown load torque. In: The 3rd international conference on systems and informatics (ICSAI), pp 61–66

  19. Janot A, Youngb PC, Gautier M (2017) Identification and control of electro-mechanical systems using state-dependent parameter estimation. Int J Control 90(4):643–660

    Article  MathSciNet  Google Scholar 

  20. Chellal R, Cuvillon L, Laroche E (2017) Model identification and vision-based \(\text{ H }\infty \) position control of 6-DoF cable-driven parallel robots. Int J Control 90(4):684–701

    Article  MathSciNet  Google Scholar 

  21. Valera A, Díaz-Rodríguez M, Valles M, Oliver E, Mata V, Page A (2017) Controller–observer design and dynamic parameter identification for model-based control of an electromechanical lower-limb rehabilitation system. Int J Control 90(4):702–714

    Article  MathSciNet  Google Scholar 

  22. Keck A, Zimmermann J, Sawodny O (2017) Friction parameter identification and compensation using the elastoplastic friction model. Mechatronics 47:168–182

    Article  Google Scholar 

  23. Postalcioglu S, Becerikli Y (2007) Wavelet networks for nonlinear system modeling. Neural Comput Appl 16:433–441

    Article  Google Scholar 

  24. Astrom KJ, Wittenmark B (2008) Adaptive Control, 2nd edn. Dover publication

  25. Astrom KJ, Borisson U, Ljung L, Wittenmark B (1977) Theory and application of self-tuning regulators. Automatica 13:457–476

    Article  Google Scholar 

  26. Oussar Y, Dreyfus G (2000) Initialization by selection for wavelet network training. Neurocomputing 34:131–143

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Sharifi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifi, J. Wavelet network for in-loop identification and control of frictional nonlinear systems. Int. J. Dynam. Control 6, 1577–1584 (2018). https://doi.org/10.1007/s40435-018-0411-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-018-0411-5

Keywords

Navigation