Adaptive fuzzy exponential terminal sliding mode controller design for nonlinear trajectory tracking control of autonomous underwater vehicle



This paper addresses an adaptive fuzzy exponential terminal sliding mode trajectory tracking control design for autonomous underwater vehicle (AUV) using time delay estimation. The proposed control scheme assures quick convergence due to a nonlinear expression in to an integral augmented sliding surface results in nonlinear sliding mode termed as integral-fast terminal sliding mode control (IFTSMC). Furthermore, control law requires no prior knowledge about highly nonlinear underwater vehicle model due to the time delay estimation method. Meanwhile, fuzzy logic system incorporated as adaptation mechanism afford for varying switching function and adaptive exponential reaching law utilized for faster reaching time in path tracking control performance. Finally, the effectiveness and robustness of the proposed control strategy are demonstrated through numerical simulations with Cyclops AUV in presence of parameter perturbations and unidentified disturbances like ocean current, wave and measurement noise.


Time delay estimation Integral-fast terminal sliding mode control Fuzzy logic system Autonomous underwater vehicle 


  1. 1.
    Arimoto S, Miyazaki F (1984) Stability and robustness of PID feedback control for robot manipulators of sensor capability. In: Brady M, Paul R (eds) Robot research. MIT Press, Cambridge, pp 783–799Google Scholar
  2. 2.
    Yoerger D, Slotine J (1985) Robust trajectory control of underwater vehicles. IEEE J Oceanic Eng 10(4):462–470CrossRefGoogle Scholar
  3. 3.
    Goheen KR, Jefferys ER (1990) Multivariable self-turning autopilots for autonomous underwater vehicles. IEEE J Oceanic Eng 15(3):144–151CrossRefGoogle Scholar
  4. 4.
    Triantafyllou MS, Grosenbaugh MA (1991) Robust control for underwater vehicle systems with time delays. IEEE J Oceanic Eng 16(1):146–151CrossRefGoogle Scholar
  5. 5.
    Nakamura Y, Savant S (1992) Nonlinear tracking control of autonomous underwater vehicles. In: Proceedings of IEEE international conference on robotics and automation, vol 3, pp 44–49Google Scholar
  6. 6.
    Antonelli G, Chiaverini S, Sarkar N, West M (2001) Adaptive control of an autonomous underwater vehicle: experimental results on ODIN. IEEE Trans Control Syst Technol 9(5):756–765CrossRefGoogle Scholar
  7. 7.
    Silvestre C, Pascoal A, Kaminer I (2002) On the design of gain scheduled trajectory tracking controllers. Int J Robust Nonlinear Control 12:797–839MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Pisano A, Usai E (2004) Output-feedback control of an underwater vehicle prototype by higher-order sliding modes. Automatica 40:1525–1531MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Feng Z, Allen R (2004) Reduced order \(H^{\infty }\) control of an autonomous underwater vehicle. Control Eng Pract 13:1511–1520CrossRefGoogle Scholar
  10. 10.
    Yuh J (1990) A neural net controller for underwater robotic vehicles. IEEE J Oceanic Eng 15(3):161–166CrossRefGoogle Scholar
  11. 11.
    DeBitetto PA (1995) Fuzzy logic for depth control of unmanned undersea vehicles. IEEE J Oceanic Eng 20(3):242–248CrossRefGoogle Scholar
  12. 12.
    Londhe PS, Santhakumar M, Patre BM, Waghmare LM (2017) Task space control of an autonomous underwater vehicle manipulator system by robust single-input fuzzy logic control scheme. IEEE J Oceanic Eng 42(1):13–28Google Scholar
  13. 13.
    Moura A, Rijo R, Silva P, Crespo S (2010) A multi-objective genetic algorithm applied to autonomous underwater underwater vehicles for sewage outfall plume dispersion observations. Appl Soft Comput 10(4):1119–1126CrossRefGoogle Scholar
  14. 14.
    Wang JS, Lee CSG (2003) Self-adaptive recurrent neuro-fuzzy control of an autonomous underwater vehicle. IEEE Trans Robot Autom 19(2):283–295CrossRefGoogle Scholar
  15. 15.
    Cristi R, Papoulias FA, Healey AJ (1990) Adaptive sliding mode control of autonomous underwater vehicles in the dive plane. IEEE J Oceanic Eng 15(3):152–160CrossRefGoogle Scholar
  16. 16.
    Fossen TI, Sagatun S (1991) Adaptive control of nonlinear systems: a case study of underwater robotic systems. J Robotic Syst 8(3):393–412CrossRefMATHGoogle Scholar
  17. 17.
    Healey AJ, Lienard D (1993) Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE J Oceanic Eng 18(3):327–339CrossRefGoogle Scholar
  18. 18.
    Soylu S, Buckham BJ, Podhorodeski RP (2008) A chattering-free sliding-mode controller for underwater vehicles with fault tolerant infinity-norm thrust allocation. Ocean Eng 35:1647–1659CrossRefGoogle Scholar
  19. 19.
    Zhou HY, Liu KZ, Feng XS (2011) State feedback sliding mode control without chattering by constructing Hurwitz matrix for AUV movement. Int J Autom Comput 8(2):262–268CrossRefGoogle Scholar
  20. 20.
    Kim M, Joe H, Kim J, Yu SC (2015) Integral sliding mode controller for precise manoeuvring of autonomous underwater vehicle in the presence of unknown environmental disturbances. Int J Control 26(2):1–11MathSciNetMATHGoogle Scholar
  21. 21.
    Wang Y, Gu L, Gao M, Zhu K (2015) Multivariable output feedback adaptive terminal sliding mode control for underwater vehicles. Asian J Control 17(6):1–19MathSciNetMATHGoogle Scholar
  22. 22.
    Xu J, Wang M, Qiao L (2015) Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles. Ocean Eng 105:54–63CrossRefGoogle Scholar
  23. 23.
    Santhakumar M, Asokan T (2010) Investigations on the hybrid tracking control of an underactuated autonomous underwater robot. Adv Robot 24:1529–1556CrossRefGoogle Scholar
  24. 24.
    Zhu D, Sun B (2013) The bio-inspired model based hybrid sliding-mode tracking control for unmanned underwater vehicles. Eng Appl Artif Intell 26:2260–2269CrossRefGoogle Scholar
  25. 25.
    Bartolini G, Pisano A (2010) Black-box position and attitude tracking for underwater vehicles by second-order sliding-mode technique. Int J Robust Nonlinear Control 20(2):1594–1609MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Ismail ZH, Putranti VWE (2015) Second order sliding mode control scheme for an autonomous underwater vehicle with dynamic region concept. Math Probl Eng 20:1–13MathSciNetCrossRefGoogle Scholar
  27. 27.
    Lee PM, Hong SW, Lim YK, Lee CM, Jeon BH, Park JW (1999) Discrete-time quasi-sliding mode control of an autonomous underwater vehicle. IEEE J Oceanic Eng 24(3):388–395CrossRefGoogle Scholar
  28. 28.
    Prasanth Kumar R, Dasgupta A, Kumar CS (2007) Robust trajectory control of underwater vehicles using time delay control law. Ocean Eng 34:842–849CrossRefGoogle Scholar
  29. 29.
    Kim J, Joe H, Yu SC, Lee JS, Kim M (2015) Time delay controller design for position control of autonomous underwater vehicle under disturbances. IEEE Trans Industr Electron 63(2):1052–1061CrossRefGoogle Scholar
  30. 30.
    Fossen TI (1994) Guidance and control of ocean vehicles. Wiley, New York, pp 448–451Google Scholar
  31. 31.
    Feng Y, Yu X, Man Z (2002) Non-singular terminal sliding mode control of rigid manipulators. Automatica 38(12):21592167MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Chen W, Wei Y, Zeng J, Han H, Jia X (2015) Adaptive terminal sliding mode NDO-based control of underactuated AUV in vertical plane. Discret Dyn Nat Soc 21:1–9Google Scholar
  33. 33.
    Elmokadem T, Zribi M, Toumi KY (2015) Trajectory tracking sliding mode control of underactuated AUVs. Nonlinear Dyn 24:22–35MATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Instrumentation EngineeringGovernment College of EngineeringJalgaonIndia
  2. 2.Department of Instrumentation EngineeringShri Guru Gobind Singhji Institute of Engineering and TechnologyNandedIndia

Personalised recommendations