Advertisement

Nonlinear dynamics of a class of derivative controlled Chua’s circuit

  • Saumendra Sankar De Sarkar
  • Saumen Chakraborty
Article

Abstract

A derivative control technique has been proposed to control the chaotic behavior of a Chua’s circuit. The chaotic oscillations of the system can be controlled externally by adjusting the feedback resistance in the derivative control arm. For a proper choice of the feedback resistance the system initially in chaotic region can be driven to the steady state region. In addition to that the shifting of the chaotic attractor for different parameter set has been observed. Moreover, the same technique can be used to generate chaotic oscillations in a Chua’s circuit, which would otherwise exhibit steady behaviour. The analytical predictions along with the numerical analysis and experimental results have been reported to establish the present work.

Keywords

Chua’s Circuit Derivative control Nonlinear dynamics Shifting of attractor 

References

  1. 1.
    Chua LO, Wu CW, Huang AS, Zhong GQ (1993) A universal circuit for studying and generating Chaos- Parts I, II. IEEE Trans. Circuits & Syst.-I: Fund. Theory Appl 40:732–761Google Scholar
  2. 2.
    Chua LO, Pivka L, Wu CW (1995) A universal circuit for studying chaotic phenomena. Philos Trans Phys Sci Eng 353(1701):65–84MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Sharkovsky AN (1993) Chaos from a time delayed Chua’s circuit. IEEE Trans Circuits Syst I Fundam Theory Appl 40(10):781–783CrossRefMATHGoogle Scholar
  4. 4.
    Zhu Z, Liu Z (1997) Strange non-chaotic attractors of Chua’s circuit with quasiperiodic excitation. Int J Bifurc Chaos 7(1):227–238CrossRefMATHGoogle Scholar
  5. 5.
    Cincotti S, Stefano SD (2004) Complex dynamical behaviours in two non-linearly coupled Chua’s circuits. Chaos Solitons Fractal 21(3):633–641CrossRefMATHGoogle Scholar
  6. 6.
    Medrano-T RO, Baptista MS, Caldas IL (2006) Shilnikov homoclinic orbit bifurcations in the Chua ’s circuit. Chaos 16:043119MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Fitch AL, Yu D, Lu HH, Sreeram V (2012) Hyperchaos in a memristor based modified canonical Chua’s circuit. Int J Bifurc Chaos 22(6):1250133CrossRefMATHGoogle Scholar
  8. 8.
    Son HS, Song HJ (2014) Active filter-based tunable Chua’s circuit with voltage controllability. J Korean Phys Soc 64(7):1040–1046CrossRefGoogle Scholar
  9. 9.
    Bao B, Jiang P, Wu H, Hu F (2015) Complex transient dynamics in periodically forced memristive Chua’s circuit. Nonlinear Dyn 79:2333–2343MathSciNetCrossRefGoogle Scholar
  10. 10.
    Premraj D, Suresh K, Banerjee T, Thamilmaran K (2016) An experimental study of slow passage through Hopf and pitchfork bifurcations in a parametrically driven nonlinear oscillator. Commun Nonlinear Sci Numer Simul 37:212–221MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ott E, Grebogi C, Yorke JA (1990) Controlling Chaos. Phys Lett A 64:1169–1199MathSciNetMATHGoogle Scholar
  12. 12.
    Chen G (1993) Controlling Chua’s global unfolding circuit family. IEEE Trans Circuirs Syst 40:829–832CrossRefMATHGoogle Scholar
  13. 13.
    Hartley TT, Mossayebi F (1993) Control of Chua’s circuit. J Circuits Syst Comput 3:173–194MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hwang CC, Chow HY, Wang YK (1996) A new feedback control of a modified Chua’s circuit system. Phys D 92:95–100Google Scholar
  15. 15.
    Maganti GB, Singh SN (2005) Modular adaptive control of chaos in Chua’s circuit. Int J Bifurc Chaos 15(9):2973–2984MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Yu YB et al (2008) Chaos and its impulsive control in Chua’s oscillator via time-delay feedback. J Electron Sci Technol China 6(1):56–60Google Scholar
  17. 17.
    He N, Gao Q, Gong C, Feng Y, Jiang C (2009) Adaptive tracking control for a class of Chua’s chaotic systems. In: Proceedings of the Chinese control and decision conference (CCDC ’09), pp 4241–4243Google Scholar
  18. 18.
    Guo W, Liu D (2011) Adaptive control of chaos in Chua’s circuit. Mathematical Problems in Engineering, Hindawi Publishing Corporation, Article ID 620946Google Scholar
  19. 19.
    Bielawski S, Bouazaoui M, Derozier D, Glorieux P (1993) Stabilization and characterization of unstable steady states in a laser. Phys Rev A 47(4):3276–3279. doi: 10.1103/PhysRevA.47.3276 CrossRefGoogle Scholar
  20. 20.
    Johnston GA, Hunt ER (1993) Derivative control of the steady state in Chua’s circuit driven in the chaotic region. IEEE Trans Circuits Syst I Fundam Theory Appl 40(11):833–835CrossRefMATHGoogle Scholar
  21. 21.
    Pyragas K, Tamasevicius A (1993) Experimental control of chaos by delayed self-controlling feedback. Phys Lett A 180:99–102CrossRefGoogle Scholar
  22. 22.
    Celka P (1994) Experimental verification of Pyragas’s chaos control method applied to Chua‘s circuit. Int J Bifurc Chaos Appl Sci Eng 4:1703–1706CrossRefMATHGoogle Scholar
  23. 23.
    Kittel A, Parisi J, Pyragas K, Richter R (1994) Delayed feedback control of chaos in an electronic double-scroll oscillator. Z Naturforsch A 49:843–846Google Scholar
  24. 24.
    Batlle C, Fossas E, Olivar G (1999) Stabilization of periodic orbits of the buck converter by time-delayed feedback. Int J Circuit Theory Appl 27:617–631CrossRefMATHGoogle Scholar
  25. 25.
    Sarkar BC, DeSarkar SS, Banerjee T (2014) Nonlinear dynamics of a class of symmetric lock range DPLLs with an additional derivative control. Signal Process 94:631–641CrossRefGoogle Scholar
  26. 26.
    Sarkar BC, Chakraborty S (2015) Chaotic oscillations in a third order PLL in the face of two Co-channel signals and its control. J Eng Sci Technol Rev 8(2):68–73Google Scholar
  27. 27.
    Chakraborty S, Sarkar BC (2016) Enhanced dynamical response of derivative controlled third order phase locked loops. Commun Nonlinear Sci Numer Simul 36:129–140MathSciNetCrossRefGoogle Scholar
  28. 28.
    Lakshmanan M (2009) Nonlinear dynamics, integrability, chaos and patterns, 3rd edn. Springer, New DelhiMATHGoogle Scholar
  29. 29.
    Kodba S, Perc M, Marhl M (2005) Detecting chaos from a time series. Eur J Phys 26:205–215CrossRefGoogle Scholar
  30. 30.
    Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time series. Phys D 16:285–317MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Banerjee T (2012) Single amplifier biquad based inductor-free Chua’s circuit. Nonlinear Dyn 68(4):565–573MathSciNetCrossRefGoogle Scholar
  32. 32.
    Bao BC, Li QD, Wang N, Xu Q (2016) Multistability in Chua’s circuit with two stable node-foci. Chaos 26(4):043111. doi: 10.1063/1.4946813 MathSciNetCrossRefGoogle Scholar
  33. 33.
    Bao BC, Wang N, Chen M, Xu Q, Wang J (2016) Inductor-free simplified Chua’s circuit only using two-op-amps-based realization. Nonlinear Dyn 84(2):511–525. doi: 10.1007/s11071-015-2503-5 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of PhysicsRaniganj Girls’ CollegeRaniganjIndia
  2. 2.Department of PhysicsBidhan Chandra CollegeAsansolIndia

Personalised recommendations