Superstructures optimization of absorption chiller for WHR of ICE aiming power plant repowering and air conditioning

Abstract

The present work aims to achieve the optimal solutions in synthesis and design levels for absorption chillers involving waste heat recovery (WHR) with repowering and cooling applications on reciprocating Wärtsilä diesel internal combustion engine (ICE) of 9 MW. The methodology is based on superstructure optimization approach, allowing to define the best configuration and finest parametric variables. This work presents separately three independent superstructures; single-effect powered by hot water or exhaust gases and double-effect powered by exhaust gases. In particular, absorption chillers can provide a chilled water system whose applications on Viana thermoelectric power plant might be performed through the installation of heat exchangers on radiator’s downstream, air conditioning systems and on the intake air of the engine. Therefore, allowing a reduction on electrical energy demand, brake specific fuel consumption and levering the brake shaft power output. A comparison is carried out between the three optimal configurations in terms of thermoeconomic parameters. The best optimal solution in means of highest profit is the hot water single-effect absorption chiller with solution heat exchanger in its structure. For instance, the profit of this optimal solution is US$ 4.75 per hour, which presents a total cost of investment of US$ 588,252.00 and a chilled water specific unit cost of US$ 2523.00 per ton. The benefit is calculated by using International Organization for Standardization documents which gives an amount of additional power output of 45.142 kW (0.517\(\%\)) with a reduction on brake specific fuel consumption around 1.282 g kWh−1 (0.646\(\%\)). The absorption chiller also reduces energy demand at radiator, resulting in 39.719 kW of savings.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Abbreviations

A :

Heat transfer area

AC:

Air conditioning

Ar:

Argon

b :

Splitting

BSFC:

Brake specific fuel consumption

C :

Chilled water specific cost

CC:

Cooling coil

CEPCI:

Chemical engineering plant cost index

CHP:

Cooling, heating and power

CI:

Cost index

\(\mathrm{CO}_2\) :

Carbon dioxide

COP:

Coefficient of performance

CR:

Control room

CRF:

Capital recovery factor

CT:

Cooling tower

CVU:

Variable cost per unit

CwAuHX:

Chilled water auxiliary heat exchanger

\(\varDelta \) :

Variation or difference

\(\epsilon \) :

Effectiveness

EES:

Engineering equation solver

h :

Specific enthalpy

Hp:

High pump

HX:

Heat exchanger

\(\mathrm{H}_2\)O:

Water

ICE:

Internal combustion engine

\(i_{\mathrm{eff}}\) :

Effective interest rate

ISO:

International organization for standardization

K :

Proportional weighted constant

LHV:

Lower heating value

LMTD:

Log mean temperature difference

Lp:

Low pump

LV:

Low voltage room

m :

Equipment’s coefficient

\(\dot{m}\) :

Mass flow rate

n :

Number of ...

N :

Rotation speed

\(\mathrm{N}_2\) :

Nitrogen

o :

Equipment’s coefficient

\(\mathrm{O}_2\) :

Oxygen

\(\mathrm{OF}\) :

Objective function

ORC:

Organic Rankine cycle

\(\dot{P}\) :

Profit rate

\(\%\) :

Percentage value

\(\phi _{\mathrm{main}}\) :

Maintenance coefficient

PR:

Pressure ratio

Q :

Volumetric flow rate

\(\dot{Q}\) :

Heat rate

\(\dot{R}\) :

Revenue rate

\(\rho \) :

Density

\(\mathrm{SO}_2\) :

Sulphur dioxide

\(\sum \) :

Sum

T :

Temperature

TCI:

Total cost of investment

U :

Global heat transfer coefficient

\(\dot{W}\) :

Work rate

WHR:

Waste heat recovery

x :

Solution mass fraction

X :

Parameter of interest

Z :

Purchase cost

\(\dot{Z}\) :

Cost rate

a:

Air stream

ART:

Artificial

cw:

Chilled water

eff:

Effective

ele:

Electric

em:

Electric motor

exp:

Expansion

f:

Fuel

i :

Index

in:

Inlet

lm:

Log mean

main:

Maintenance

max:

Maximum

min:

Minimum

ope:

Operation

ou:

Outlet

p:

Pump

rad:

Radiator

ref:

Reference

References

  1. 1.

    Frangopoulos CA, Spakovsky MRV, Sciubba E (2002) A brief review of methods for the design and synthesis optimization of energy systems. Int J Thermodyn 5:151–160

    Google Scholar 

  2. 2.

    Alcântara SCS, Ochoa AAV, da Costa JAP, Michima PSA, Silva HCN (2019) Natural gas based trigeneration system proposal to an ice cream factory: an energetic and economic assessment. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2019.111860

    Article  Google Scholar 

  3. 3.

    Gbemi O, Jobson M, Smith R, Perry SJ (2015) Evaluating the potential of process sites for waste heat recovery. Appl Energy 161:627–646. https://doi.org/10.1016/j.apenergy.2015.07.011

    Article  Google Scholar 

  4. 4.

    Gbemi O, Jobson M, Smith R (2015) A hierarchical approach for evaluating and selecting waste heat utilization opportunities. Energy 90:5–23. https://doi.org/10.1016/j.energy.2015.05.086

    Article  Google Scholar 

  5. 5.

    Morawski AP, Araújo LR, Cunha CCM, Donatelli JLM, Santos JJCS (2017) Comparison of the repowering alternatives technologies for waste heat recovery in a diesel engine power plant. In: ECOS 2017 proceedings of the 30th international conference on efficiency, cost, optimization, simulation and environmental impact of energy systems

  6. 6.

    Souza RJ, Dos Santos CAC, Ochoa AAV, Marques AS, Neto JLM, Michima PSA (2020) Proposal and 3E (energy, exergy, and exergoeconomic) assessment of a cogeneration system using an organic Rankine cycle and an absorption refrigeration system in the Northeast Brazil: Thermodynamic investigation of a facility case study. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2020.113002

    Article  Google Scholar 

  7. 7.

    Herold KE, Radermacher R, Klein SA (2016) Absorption chillers and heat pumps. CRC Press, Boca Raton

    Google Scholar 

  8. 8.

    ASHRAE (2014) Refrigeration. ASHRAE Handbook, Atlanta

    Google Scholar 

  9. 9.

    Chun A (2017) Otimização de uma superestrutura de chillers por absorção para a recuperação de calor Residual em motores de combustão interna. Universidade Federal do Espírito Santo (In Portuguese), Trabalho de Conclusão de Curso

  10. 10.

    Chun A, Morawski AP, Araújo LR, Oliveira RCL, Barone MA, Schiaffino M, Donatelli JLM, Santos JJCS, Cunha CCM, Valiati AS (2018) Thermoeconomic optimization of absorption chiller superstructures for an internal combustion engine; waste heat recovery and cold-water applications. In: International conference of thermal science (ENCIT 2018)

  11. 11.

    Henao CA (2012) A superstructure modeling framework for process synthesis using surrogate models. Doctoral thesis, The University of Wisconsin-Madison

  12. 12.

    Barnicki SD, Siirola JJ (2004) Process synthesis prospective. Comput Chem Eng 28:441–446. https://doi.org/10.1016/j.compchemeng.2003.09.030

    Article  Google Scholar 

  13. 13.

    Liu P, Georgiadis MC, Pistikopoulos EN (2011) Advances in energy systems engineering. Ind Eng Chem Res ACS Publ 50:4915–4926. https://doi.org/10.1021/ie101383h

    Article  Google Scholar 

  14. 14.

    Mencarelli L, Chen Q, Pagot A, Grossmann IE (2020) A review on superstructure optimization approaches in process system engineering. Comput Chem Eng 19:S0098-1354. https://doi.org/10.1016/j.compchemeng.2020.106808

    Article  Google Scholar 

  15. 15.

    Alefeld G, Radermacher R (1993) Heat conversion systems. CRC Press, Boca Raton

    Google Scholar 

  16. 16.

    Bertran M-O, Frauzem R, Sanchez-Arcilla A-S, Zhang L, Woodley JM, Gani R (2017) A generic methodology for processing route synthesis and design based on superstructure optimization. Comput Chem Eng 106:892–910. https://doi.org/10.1016/j.compchemeng.2017.01.030

    Article  Google Scholar 

  17. 17.

    Yu H, Eason J, Biegler LT, Feng X (2017) Process integration and superstructure optimization of Organic Rankine Cycles (ORCS) with heat exchanger network synthesis. Comput Chem Eng 107:257–270. https://doi.org/10.1016/j.compchemeng.2017.05.013

    Article  Google Scholar 

  18. 18.

    Maia L, Carvalho LVD, Qassim R (1995) Synthesis of utility systems by simulated annealing. Comput Chem Eng 19:481–488. https://doi.org/10.1016/0098-1354(94)00061-R

    Article  Google Scholar 

  19. 19.

    Donatelli JLM (2002) Otimização estrutural e paramétrica de sistemas de cogeração utilizando superestruturas. Tese (Doutorado), COPPE/Universidade Federal do Rio de Janeiro (In Portuguese)

  20. 20.

    Koch C, Cziesla F, Tsatsaronis G (2007) Optimization of combined cycle power plants using evolutionary algorithms. Chem Eng and Process 46:1151–1159. https://doi.org/10.1016/j.cep.2006.06.025

    Article  Google Scholar 

  21. 21.

    Bouvy C, Lucas K (2007) Multicriterial optimisation of communal energy supply concepts. Energy Convers Manag 48:2827–2835. https://doi.org/10.1016/j.enconman.2007.06.046

    Article  Google Scholar 

  22. 22.

    Voll P, Lampe M, Wrobel G, Bardow A (2012) Superstructure-free synthesis and optimization of distributed industrial energy supply systems. Energy 45:424–435. https://doi.org/10.1016/j.energy.2012.01.041

    Article  Google Scholar 

  23. 23.

    Wang L, Voll P, Lampe M, Yang Y, Bardow A (2015) Superstructure-free synthesis and optimization of thermal power plants. Energy 91:700–711. https://doi.org/10.1016/j.energy.2015.08.068

    Article  Google Scholar 

  24. 24.

    Wang L, Yang Y, Dong C, Morosuk T, Tsatsaronis G (2014) Parametric optimization of supercritical coal-fired power plants by MINLP and differential evolution. Energy Convers Manag 85:828–838. https://doi.org/10.1016/j.enconman.2014.01.006

    Article  Google Scholar 

  25. 25.

    Klein S, Nellis G (2012) Mastering EES. f-Chart software

  26. 26.

    EES (2017) Engineering equation solver-EES

  27. 27.

    Dixit M, Arora A, Kaushik SC (2017) Thermodynamic and thermoeconomic analyses of two stage hybrid absorption compression refrigeration system. Appl Therm Eng 113:120–131. https://doi.org/10.1016/j.applthermaleng.2016.10.206

    Article  Google Scholar 

  28. 28.

    Moran MJ, Shapiro HN, Boettner DD, Mailey MB (2013) Fundamentals of engineering thermodynamics. Wiley, Cambridge

    Google Scholar 

  29. 29.

    More AJ (2015) 40 lessons on refrigeration and air conditioning from IIT kharagpur. IIT Kharagpur, Kharagpur

    Google Scholar 

  30. 30.

    Fox RW, Pritchard PJ, McDonald AT (2012) Introdução à Mecânica dos Fluidos. Grupo Gen-LTC, Rio de Janeiro (In Portuguese)

    Google Scholar 

  31. 31.

    Ribeiro CC (2015) Desenvolvimento de um Sistema de Informação para Monitoramento e Diagnóstico de Desempenho Termodinâmico de uma Central Termelétrica com Motores de Combustão Interna. Dissertação de Mestrado (In Portuguese)

  32. 32.

    ISO 15550 (2002) International organization for standardization-internal combustion engines: determination and method for the measurement of engine power-general requirements. Geneve, Switzerland

  33. 33.

    ISO 3046–1 (2002) International Organization for Standardization-Reciprocating internal combustion engines—performance, part 1. Geneve, Switzerland

  34. 34.

    Boehm RF (1987) Design analysis of thermal systems. Wiley, New York

    Google Scholar 

  35. 35.

    Bejan A, Tsatsaronis G, Moran M (1996) Thermal design and optimization. Wiley, New York

    Google Scholar 

  36. 36.

    D’Accadia MD, Rossi FD (1998) Thermoeconomic optimization of a refrigeration plant. Int J Refrig 21:42–54. https://doi.org/10.1016/S0140-7007(97)00071-6

    Article  Google Scholar 

  37. 37.

    Misra RD, Sahoo PK, Gupta A (2005) Thermoeconomic evaluation and optimization of a double-effect H2O/LiBr vapour-absorption refrigeration system. Int J Refrig 28:331–343. https://doi.org/10.1016/j.ijrefrig.2004.09.006

    Article  Google Scholar 

  38. 38.

    Misra RD, Sahoo PK, Sahoo S, Gupta A (2003) Thermoeconomic optimization of a single effect water/libr vapour absorption refrigeration system. Int J Refrig 26:158–169. https://doi.org/10.1016/S0140-7007(02)00086-5

    Article  Google Scholar 

  39. 39.

    Christian J (1977) Central cooling: absorptive chillers. U.S. energy research and development administration. Oak Ridge National Laboratory

  40. 40.

    CEPCI (2018) Economic indicators https://www.chemengonline.com/site/plant-cost-index/. Accessed Oct 05

  41. 41.

    Vatavuk WM (2001) Updating the CE plant cost index. Chem Eng 109:62–70

    Google Scholar 

  42. 42.

    Castillo JCÁ (2007) Cost estimation of using an absorption refrigeration system with geothermal energy for industrial applications in el Salvador. United Nations University, Iceland

    Google Scholar 

  43. 43.

    Lapponi JC (2000) Projetos de investimento: construção e avaliação do fluxo de caixa. Lapponi, São Paulo ( (In Portuguese))

    Google Scholar 

  44. 44.

    Metcalfe T (2018) MPIKAIA - Parallel Genetic Algorithm

  45. 45.

    Metcalfe TS, Charbonneau P (2003) Stellar structure modeling using a parallel genetic algorithm for objective global optimization. J Comput Phys 185:176–193. https://doi.org/10.1016/S0021-9991(02)00053-0

    Article  MATH  Google Scholar 

  46. 46.

    De Jong KA (1975) Analysis of the behavior of a class of genetic adaptive systems. University of Michigan, Ann Arbor

    Google Scholar 

  47. 47.

    Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison Wesley Publishing Company, Boston

    Google Scholar 

  48. 48.

    Amir V (1975) Optimization the rankine cycle with genetic algorithm. In: Proceedings of the 2nd international conference on mechanical, production and automobile engineering (ICMPAE’2012)

Download references

Acknowledgements

The authors are grateful to the Program of Research and Development of the Electric Energy Sector regulated by the Brazilian Electricity Regulatory Agency (ANEEL), Coordination for the Improvement of Higher Education Personnel (CAPES), Support Foundation Espírito Santo Research (FAPES), Termelétrica Viana S.A. (TEVISA) which provided financial support for the R&D project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to André Chun.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Technical Editor: Monica Carvalho, PhD.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chun, A., Morawski, A.P., Barone, M.A. et al. Superstructures optimization of absorption chiller for WHR of ICE aiming power plant repowering and air conditioning. J Braz. Soc. Mech. Sci. Eng. 43, 135 (2021). https://doi.org/10.1007/s40430-021-02872-2

Download citation

Keywords

  • Waste heat recovery
  • Repowering application
  • Internal combustion engine
  • Cooling applications
  • Superstructure optimization
  • Absorption chiller