Energy harvesting from nonlinear vibrations of an L-shaped beam using piezoelectric patches

Abstract

In the present study, the energy harvesting from nonlinear vibrations of an L-shaped beam with the use of piezoelectric patches is evaluated. The beam was assumed to be a Euler–Bernoulli type in which the effects of rotational inertia and shear forces are neglected. Also, the effective mass of the beam is assumed to be at the end of the beam. The axial displacement of the beam is included with the assumption of small excitation amplitude. The effect of the piezoelectric patch on the equations of motion is also considered. First, the nonlinear motion equations of an L-shaped beam are extracted by the use of the Lagrange method, and then, the obtained equations of motion are solved by multiple scales technique. Also, the mode shapes of the system are calculated for the linear undamped system. The dimensions of the L-shaped beam are chosen in such a way that the ratio of the first-to-second natural frequency is 1 to 2, in order to increase the bandwidth of the energy harvesting. Finally, the results of the analytical solutions are compared and validated with the experimental results. Good agreement was observed between the theoretical values and the measured data.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Reference:

  1. 1.

    Cao DX, Leadenham S, Erturk A (2015) Internal resonance for nonlinear vibration energy harvesting. Eur Phys J Special Topics 224(14–15):2867–2880

    Article  Google Scholar 

  2. 2.

    Chen L-Q, Jiang W-A, Panyam M et al (2016) A broadband internally resonant vibratory energy harvester. J Vibr Acoust 138(6):61007

    Article  Google Scholar 

  3. 3.

    Erturk A, Inman DJ (2008) A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J Vibr Acoust 130(4):41002

    Article  Google Scholar 

  4. 4.

    Erturk A, Renno JM, Inman DJ (2009) Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs. J Intelli Mater Syst Struct 20(5):529–544

    Article  Google Scholar 

  5. 5.

    Haddow AG, Barr ADS, Mook DT (1984) Theoretical and experimental study of modal interaction in a two-degree-of-freedom structure. J Sound Vibr 97(3):451–473

    MathSciNet  Article  Google Scholar 

  6. 6.

    Harne RL, Sun A, Wang KW (2016) Leveraging nonlinear saturation-based phenomena in an L-shaped vibration energy harvesting system. J Sound Vibr 363:517–531

    Article  Google Scholar 

  7. 7.

    Kim I-H, Jang S-J and Jung H-J (2017) Design and Experimental Study of an L Shape Piezoelectric Energy Harvester. Shock and Vibration 2017. Hindawi.

  8. 8.

    Kim JE (2017) New efficiency measures of energy conversion and their characterization for piezoelectric vibration energy harvesters. J Intell Mater Syst Struct 28(20):2908–2919

    Article  Google Scholar 

  9. 9.

    Liu D, Al-Haik M, Zakaria M et al (2018) Piezoelectric energy harvesting using L-shaped structures. J Intell Mater Syst Struct 29(6):1206–1215

    Article  Google Scholar 

  10. 10.

    Magoteaux KC, Sanders B and Sodano HA (2008) Investigation of an energy harvesting small unmanned air vehicle. In: Active and Passive Smart Structures and Integrated Systems 2008, 2008, p. 692823. International Society for Optics and Photonics.

  11. 11.

    Midé Technology Corporation (n.d.). Available at: https://www.mide.com/ (accessed 16 November 2017).

  12. 12.

    Rami Reddy A, Umapathy M, Ezhilarasi D et al (2014) Improved energy harvesting from vibration by introducing cavity in a cantilever beam. Jf Vibr Contr 22(13):3057–3066. https://doi.org/10.1177/1077546314558498

    MathSciNet  Article  Google Scholar 

  13. 13.

    Tikani R, Torfenezhad L, Mousavi M et al (2018) Optimization of spiral-shaped piezoelectric energy harvester using Taguchi method. JVC/J Vibr Contr 24(19):4484–4491. https://doi.org/10.1177/1077546317727146

    Article  Google Scholar 

  14. 14.

    Varoto PS (2017) Experimental analysis of a piezoelectric energy harvester with internal resonances. In: Nonlinear Dynamics, Volume 1. Springer, pp. 87–97.

  15. 15.

    Zamani Kouhpanji MR (2018) Demonstrating the effects of elastic support on power generation and storage capability of piezoelectric energy harvesting devices. Journal of Intelligent Material Systems and Structures. SAGE Publications Sage UK: London, England: 1045389X18806398.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Tikani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Technical Editor: Pedro Manuel Calas Lopes Pacheco, D.Sc.

Appendix 1

Appendix 1

See Fig. 11

Fig. 11
figure11

A magnified view of the piezoelectric material layers

  • (a)

    $$\left( {{\text{EI}}} \right)_{{\text{k}}} = \left( {\text{Y}} \right)_{{\text{k}}} \frac{{\left( {\text{b}} \right)_{{\text{k}}} }}{3}\left[ {\left( {{\text{h}}_{{{\text{top}}}} } \right)_{{\text{k}}}^{3} - \left( {{\text{h}}_{{{\text{bottom}}}} } \right)_{{\text{k}}}^{3} } \right]$$
    (60a)
    $$\begin{aligned} \left( {{\text{EI}}_{{\text{p}}} } \right)_{{\text{k}}} = & \left( {{\text{Y}}_{{\text{p}}} } \right)_{{\text{k}}} \frac{{\left( {{\text{n}}_{{\text{p}}} {\text{b}}_{{\text{p}}} } \right)_{{\text{k}}} }}{3}\left[ {\left( {{\text{h}}_{{{\text{tp}}}} } \right)_{{\text{k}}}^{3} - \left( {{\text{h}}_{{{\text{ts}}}} } \right)_{{\text{k}}}^{3} } \right] + \left( {{\text{Y}}_{{\text{l}}} } \right)_{{\text{k}}} \frac{{\left( {{\text{n}}_{{\text{l}}} {\text{b}}_{{\text{c}}} } \right)_{{\text{k}}} }}{3}\left[ {\left( {{\text{h}}_{{{\text{tl}}}} } \right)_{{\text{k}}}^{3} - \left( {{\text{h}}_{{{\text{top}}}} } \right)_{{\text{k}}}^{3} } \right] \\ & \; + \left( {{\text{Y}}_{{\text{s}}} } \right)_{{\text{k}}} \frac{{\left( {{\text{n}}_{{\text{s}}} {\text{b}}_{{\text{c}}} } \right)_{{\text{k}}} }}{3}\left[ {\left( {{\text{h}}_{{{\text{ts}}}} } \right)_{{\text{k}}}^{3} - \left( {{\text{h}}_{{{\text{tl}}}} } \right)_{{\text{k}}}^{3} } \right] + \left( {{\text{Y}}_{{\text{c}}} } \right)_{{\text{k}}} \frac{{\left( {{\text{n}}_{{\text{c}}} {\text{b}}_{{\text{c}}} } \right)_{{\text{k}}} }}{3}\left[ {\left( {{\text{h}}_{{{\text{tc}}}} } \right)_{{\text{k}}}^{3} - \left( {{\text{h}}_{{{\text{tp}}}} } \right)_{{\text{k}}}^{3} } \right] + \left( {{\text{Y}}_{{\text{o}}} } \right)_{{\text{k}}} \frac{{\left( {{\text{n}}_{{\text{o}}} {\text{b}}_{{\text{c}}} } \right)_{{\text{k}}} }}{3}\left[ {\left( {{\text{h}}_{{{\text{to}}}} } \right)_{{\text{k}}}^{3} - \left( {{\text{h}}_{{{\text{tc}}}} } \right)_{{\text{k}}}^{3} } \right]. \\ \end{aligned}$$
    (60b)

    Here,

    $$\left( {{\text{h}}_{{\text{t}}} } \right)_{{\text{k}}} = \frac{{\left( {{\Xi}_{1} } \right)_{{\text{k}}} + 2\left( {{\Xi}_{2} } \right)_{{\text{k}}} }}{{2\left( {{\text{bh}} + {\text{n}}_{{\text{l}}} {\text{b}}_{{\text{c}}} {\text{h}}_{{\text{l}}} + {\text{n}}_{{\text{s}}} {\text{b}}_{{\text{c}}} {\text{h}}_{{\text{s}}} + {\text{n}}_{{\text{p}}} {\text{b}}_{{\text{p}}} {\text{h}}_{{\text{p}}} + {\text{n}}_{{\text{c}}} {\text{b}}_{{\text{c}}} {\text{h}}_{{\text{c}}} + {\text{n}}_{{\text{o}}} {\text{b}}_{{\text{c}}} {\text{h}}_{{\text{o}}} } \right)_{{\text{k}}} }},$$
    (61a)

    where

    $$\left( {\Xi_{1} } \right)_{{\text{k}}} = \left( {\text{b}} \right)_{{\text{k}}} \left( {\text{h}} \right)_{{\text{k}}}^{2} + \left( {{\text{n}}_{{\text{l}}} {\text{b}}_{{\text{c}}} } \right)_{{\text{k}}} \left( {{\text{h}}_{{\text{l}}} } \right)_{{\text{k}}}^{2} + \left( {{\text{n}}_{{\text{s}}} {\text{b}}_{{\text{c}}} } \right)_{{\text{k}}} \left( {{\text{h}}_{{\text{s}}} } \right)_{{\text{k}}}^{2} + \left( {{\text{n}}_{{\text{p}}} {\text{b}}_{{\text{p}}} } \right)_{{\text{k}}} \left( {{\text{h}}_{{\text{p}}} } \right)_{{\text{k}}}^{2} + \left( {{\text{n}}_{{\text{c}}} {\text{b}}_{{\text{c}}} } \right)_{{\text{k}}} \left( {{\text{h}}_{{\text{c}}} } \right)_{{\text{k}}}^{2} + \left( {{\text{n}}_{{\text{o}}} {\text{b}}_{{\text{c}}} } \right)_{{\text{k}}} \left( {{\text{h}}_{{\text{o}}} } \right)_{{\text{k}}}^{2}$$
    (62a)
    $$\left( {{\Xi}_{2} } \right)_{{\text{k}}} = \left( {{\text{n}}_{{\text{l}}} {\text{h}}_{{\text{l}}} {\text{h}}_{{\text{s}}} } \right)_{{\text{k}}} + \left( {{\text{n}}_{{\text{s}}} {\text{h}}_{{\text{s}}} \left( {{\text{h}} + {\text{h}}_{{\text{l}}} } \right)} \right)_{{\text{k}}} + \left( {{\text{n}}_{{\text{p}}} {\text{h}}_{{\text{p}}} \left( {{\text{h}} + {\text{h}}_{{\text{l}}} + {\text{h}}_{{\text{s}}} } \right)} \right)_{{\text{k}}} + \left( {{\text{n}}_{{\text{c}}} {\text{h}}_{{\text{c}}} \left( {{\text{h}} + {\text{h}}_{{\text{l}}} + {\text{h}}_{{\text{s}}} + {\text{h}}_{{\text{p}}} } \right)} \right)_{{\text{k}}} + \left( {{\text{n}}_{{\text{o}}} {\text{h}}_{{\text{o}}} \left( {{\text{h}} + {\text{h}}_{{\text{l}}} + {\text{h}}_{{\text{s}}} + {\text{h}}_{{\text{p}}} + {\text{h}}_{{\text{c}}} } \right)} \right)_{{\text{k}}}$$
    (62b)

    and

    $$\left( {{\text{n}}_{{\text{i}}} } \right)_{{\text{k}}} = \left( {{\text{Y}}_{{\text{i}}} } \right)_{{\text{k}}} /\left( {\text{Y}} \right)_{{\text{k}}} ,\,\left( {{\text{h}}_{{{\text{bottom}}}} } \right)_{{\text{k}}} = - {\text{h}}_{{\text{t}}} ,\left( {{\text{h}}_{{{\text{top}}}} } \right)_{{\text{k}}} = {\text{h}} - {\text{h}}_{{\text{t}}}$$
    (63a,b,c)
    $$\left( {{\text{h}}_{{{\text{tl}}}} } \right)_{{\text{k}}} = {\text{h}} + {\text{h}}_{{\text{l}}} - {\text{h}}_{{\text{t}}} { },\;\left( {{\text{h}}_{{{\text{ts}}}} } \right)_{{\text{k}}} = {\text{h}} + {\text{h}}_{{\text{l}}} + {\text{h}}_{{\text{s}}} - {\text{h}}_{{\text{t}}} { },$$
    (63d,e)
    $$\left( {{\text{h}}_{{{\text{tp}}}} } \right)_{{\text{k}}} = {\text{h}} + {\text{h}}_{{\text{l}}} + {\text{h}}_{{\text{s}}} + {\text{h}}_{{\text{p}}} - {\text{h}}_{{\text{t}}} { },{ }\left( {{\text{h}}_{{{\text{tc}}}} } \right)_{{\text{k}}} = {\text{h}} + {\text{h}}_{{\text{l}}} + {\text{h}}_{{\text{s}}} + {\text{h}}_{{\text{p}}} + {\text{h}}_{{\text{c}}} - {\text{h}}_{{\text{t}}}$$
    (63f,g)
    $$\left( {{\text{h}}_{{{\text{to}}}} } \right)_{{\text{k}}} = {\text{h}} + {\text{h}}_{{\text{l}}} + {\text{h}}_{{\text{s}}} + {\text{h}}_{{\text{p}}} + {\text{h}}_{{\text{c}}} + {\text{h}}_{{\text{o}}} - {\text{h}}_{{\text{t}}}$$
    (63h)
  • (b)

    $${\text{C}}_{11} = \frac{9}{5} + 3{\text{e}}_{1} + \frac{{4{\text{e}}_{1}^{2} }}{3}{ },{\text{C}}_{13} = \frac{9}{5} + 3{\text{e}}_{2} + \frac{{4{\text{e}}_{2}^{2} }}{3}$$
    (64a,b)
    $${\text{C}}_{12} = \frac{9}{5} + \frac{3}{2}\left( {{\text{e}}_{1} + {\text{e}}_{2} } \right) + \frac{4}{3}{\text{e}}_{1} {\text{e}}_{2} { }$$
    (64c)
    $${\text{C}}_{21} = {\uplambda }_{1} \left( {3 + 2{\text{e}}_{1} } \right)^{2} + \left\{ {4{\uplambda }_{2} \left( {3 + 2{\text{e}}_{1} } \right)\left( {3 + {\text{e}}_{1} } \right)/3} \right\} + \left\{ {8{\uplambda }_{1} {\uplambda }_{2} \left( {3 + {\text{e}}_{1} } \right)^{2} /15} \right\}$$
    (64d)
    $${\text{C}}_{23} = {\uplambda }_{1} \left( {3 + 2{\text{e}}_{2} } \right)^{2} + \left\{ {4{\uplambda }_{2} \left( {3 + 2{\text{e}}_{2} } \right)\left( {3 + {\text{e}}_{2} } \right)/3} \right\} + \left\{ {8{\uplambda }_{2} {\uplambda }_{3} \left( {3 + {\text{e}}_{2} } \right)^{2} /15} \right\}$$
    (64e)
    $$\begin{aligned} {\text{C}}_{{22}} = \lambda _{1} \left( {3 + 2{\text{e}}_{1} } \right)\left( {3 + 2{\text{e}}_{2} } \right) + \left\{ {8\lambda _{2} \lambda _{3} \left( {3 + {\text{e}}_{1} } \right)\left( {3 + {\text{e}}_{2} } \right)/15} \right\} \hfill \\ + \left( {2\lambda _{2} /3} \right)\left[ {\left( {3 + 2{\text{e}}_{1} } \right)\left( {3 + {\text{e}}_{2} } \right) + \left( {3 + 2{\text{e}}_{2} } \right)\left( {3 + {\text{e}}_{1} } \right)} \right] \hfill \\ \end{aligned}$$
    (64f)
  • (c)

    $${\text{Y}}_{11} = \frac{{2{\text{R}}\left( {{\text{A}}_{21} {\text{C}}_{11} - {\text{A}}_{11} {\text{C}}_{21} } \right)}}{{{\text{N}}_{1} }}{ },\;{\text{Y}}_{12} = \frac{{{\text{R}}\left( {{\text{A}}_{22} {\text{C}}_{11} + {\text{A}}_{21} {\text{C}}_{12} - {\text{A}}_{12} {\text{C}}_{21} - {\text{A}}_{11} {\text{C}}_{22} } \right)}}{{{\text{N}}_{1} }}$$
    (65a,b)
    $${\text{Y}}_{13} = \frac{{2{\text{R}}\left( {{\text{A}}_{21} {\text{C}}_{12} - {\text{A}}_{11} {\text{C}}_{22} } \right)}}{{{\text{N}}_{1} }}{ },{\text{ Y}}_{14} = \frac{{{\text{R}}\left( {{\text{A}}_{22} {\text{C}}_{12} + {\text{A}}_{21} {\text{C}}_{13} - {\text{A}}_{12} {\text{C}}_{22} - {\text{A}}_{11} {\text{C}}_{23} } \right)}}{{{\text{N}}_{1} }}$$
    (65c,d)
    $${\text{Y}}_{21} = \frac{{{\text{N}}_{1} {\text{Y}}_{12} }}{{{\text{N}}_{2} }},{\text{ Y}}_{22} = \frac{{2{\text{R}}\left( {{\text{A}}_{22} {\text{C}}_{12} - {\text{A}}_{12} {\text{C}}_{22} } \right)}}{{{\text{N}}_{2} }}$$
    (65e,f)
    $${\text{Y}}_{23} = \frac{{{\text{N}}_{1} {\text{Y}}_{14} }}{{{\text{N}}_{2} }},{\text{Y}}_{24} = \frac{{2{\text{R}}\left( {{\text{A}}_{22} {\text{C}}_{13} - {\text{A}}_{12} {\text{C}}_{23} } \right)}}{{{\text{N}}_{2} }}$$
    (65 g,h)
    $${\text{A}}_{{1{\text{i}}}} = 1 + {\text{e}}_{{\text{i}}} { },{\text{A}}_{{2{\text{i}}}} = {\uplambda }_{1} \left( {3 + 2{\text{e}}_{{\text{i}}} } \right) + \frac{2}{3}{\uplambda }_{2} \left( {3 + {\text{e}}_{{\text{i}}} } \right)$$
    (65j,k)
    $${\text{N}}_{{\text{i}}} = \left( {1 + {\text{R}}} \right)\left( {1 + {\text{e}}_{{\text{i}}} } \right)^{2} + {\text{R}}\left[ {{\uplambda }_{1} \left( {3 + 2{\text{e}}_{{\text{i}}} } \right) + \frac{2}{3}{\uplambda }_{2} \left( {3 + {\text{e}}_{{\text{i}}} } \right)} \right]^{2} for\,\,{\text{i}} = 1,2$$
    (65l)
  • (d)

    $${\text{Z}}_{{11}} = \frac{{{\text{R}}\Omega {\text{C}}_{{21}} }}{{2{\text{N}}_{1} }},{\mkern 1mu} Z_{{12}} = \frac{{{\text{R}}\Omega {\text{C}}_{{22}} }}{{2{\text{N}}_{1} }},{\mkern 1mu} Z_{{21}} = \frac{{{\text{R}}\Omega {\text{C}}_{{22}} }}{{2{\text{N}}_{2} }},{\mkern 1mu} Z_{{22}} = \frac{{{\text{R}}\Omega {\text{C}}_{{23}} }}{{2{\text{N}}_{2} }}$$
    (66a,b,c,d)
  • (e)

    $${\text{X}}_{11} = {\text{Y}}_{11} /2,{\text{ X}}_{12} = {\text{Y}}_{13} { },{\text{X}}_{13} = \frac{{{\text{R}}\left( {{\text{A}}_{21} {\text{C}}_{13} - {\text{A}}_{11} {\text{C}}_{23} } \right)}}{{{\text{N}}_{1} }}{ }$$
    (67a,b,c)
    $${\text{X}}_{{21}} = \frac{{{\text{R}}\left( {{\text{A}}_{{22}} {\text{C}}_{{11}} - {\text{A}}_{{12}} {\text{C}}_{{21}} } \right)}}{{{\text{N}}_{2} }},{\mkern 1mu} {\text{X}}_{{22}} = {\text{Y}}_{{22}} ,{\mkern 1mu} {\text{X}}_{{23}} = {\text{Y}}_{{24}} /2.$$
    (67d,f,g)

    and

    $${\text{K}}_{{\text{i}}} = \frac{{\Omega ^{2} \left( {1 + {\text{R}}} \right){\text{A}}_{{1{\text{i}}}} }}{{2{\text{N}}_{{\text{i}}} }}$$
    (67h)
  • (f)

    $$J_{1i} = \vartheta_{1} \left( {3 + 2e_{i} } \right)/N_{1} ,\,J_{2i} = \left\{ {\vartheta_{2} \left( {3 + e_{i} } \right)\frac{{\lambda_{2} }}{{\lambda_{1} }}} \right\}/N_{2}$$
    (68a,b)
  • (g)

    $$\zeta_{11} = \frac{{i\frac{{\omega_{1} l_{1} }}{\beta }\left( {\frac{{\varphi^{\prime}_{11} }}{{T_{c2} }} - \frac{{\varphi ^{\prime}_{21} }}{{T_{c1} }}} \right) - l_{1} \varphi ^{\prime}_{11} \omega_{1}^{2} }}{{i\omega_{1} \lambda_{t} - \omega_{1}^{2} }} , \,\zeta_{12} = \frac{{i\frac{{\omega_{2} l_{1} }}{\beta }\left( {\frac{{\varphi^{\prime}_{12} }}{{T_{c2} }} - \frac{{\varphi ^{\prime}_{22} }}{{T_{c1} }}} \right) - l_{1} \varphi ^{\prime}_{12} \omega_{2}^{2} }}{{i\omega_{2} \lambda_{t} - \omega_{2}^{2} }}$$
    (69a,b)
    $$\zeta_{21} = \frac{{i\frac{{\omega_{1} l_{1} }}{\beta }\left( {\frac{{\varphi^{\prime}_{21} }}{{T_{c1} }} - \frac{{\varphi ^{\prime}_{11} }}{{T_{c2} }}} \right) - l_{1} \varphi ^{\prime}_{21} \omega_{1}^{2} }}{{i\omega_{1} \lambda_{t} - \omega_{1}^{2} }} , \;\zeta_{22} = \frac{{i\frac{{\omega_{2} l_{1} }}{\beta }\left( {\frac{{\varphi^{\prime}_{22} }}{{T_{c1} }} - \frac{{\varphi ^{\prime}_{12} }}{{T_{c2} }}} \right) - l_{1} \varphi ^{\prime}_{22} \omega_{2}^{2} }}{{i\omega_{2} \lambda_{t} - \omega_{2}^{2} }}$$
    (69c,d)

    where

    $$\varphi ^{\prime}_{ij} = \varphi_{ij} /C_{pi} ,\;T_{ci} = R_{1} C_{pi} ,\;\lambda_{t} = \frac{1}{{\beta T_{c1} }} + \frac{1}{{\beta T_{c2} }}$$
    (70a,b)
  • (h)

    $$G_{r1} = \frac{{\frac{{\omega_{1}^{2} l_{1} }}{\beta }\left( {\frac{{\varphi^{\prime}_{11} }}{{T_{c2} }} - \frac{{\varphi ^{\prime}_{21} }}{{T_{c1} }}} \right)\lambda_{t} + l_{1} \varphi ^{\prime}_{11} \omega_{1}^{4} }}{{\left( {\omega_{1} } \right)^{4} + \left( {\lambda_{t} \omega_{1} } \right)^{2} }} ,\;G_{m1} = \frac{{\frac{{\omega_{1}^{3} l_{1} }}{\beta }\left( {\frac{{\varphi^{\prime}_{11} }}{{T_{c2} }} - \frac{{\varphi ^{\prime}_{21} }}{{T_{c1} }}} \right) + l_{1} \varphi ^{\prime}_{11} \omega_{1}^{3} \lambda_{t} }}{{\left( {\omega_{1} } \right)^{4} + \left( {\lambda_{t} \omega_{1} } \right)^{2} }}$$
    (71a,b)
    $$G_{r2} = \frac{{\frac{{\omega_{2}^{2} l_{1} }}{\beta }\left( {\frac{{\varphi^{\prime}_{12} }}{{T_{c2} }} - \frac{{\varphi ^{\prime}_{22} }}{{T_{c1} }}} \right)\lambda_{t} + l_{1} \varphi ^{\prime}_{12} \omega_{2}^{4} }}{{\left( {\omega_{2} } \right)^{4} + \left( {\lambda_{t} \omega_{2} } \right)^{2} }} ,\;G_{m2} = \frac{{\frac{{\omega_{2}^{3} l_{1} }}{\beta }\left( {\frac{{\varphi^{\prime}_{12} }}{{T_{c2} }} - \frac{{\varphi ^{\prime}_{22} }}{{T_{c1} }}} \right) + l_{1} \varphi ^{\prime}_{11} \omega_{2}^{3} \lambda_{t} }}{{\left( {\omega_{2} } \right)^{4} + \left( {\lambda_{t} \omega_{2} } \right)^{2} }}$$
    (71c,d)
    $$G_{r3} = \frac{{\frac{{\omega_{1}^{2} l_{1} }}{\beta }\left( {\frac{{\varphi^{\prime}_{12} }}{{T_{c1} }} - \frac{{\varphi ^{\prime}_{11} }}{{T_{c2} }}} \right)\lambda_{t} + l_{1} \varphi ^{\prime}_{11} \omega_{1}^{4} }}{{\left( {\omega_{1} } \right)^{4} + \left( {\lambda_{t} \omega_{1} } \right)^{2} }} ,\;G_{m3} = \frac{{\frac{{\omega_{1}^{3} l_{1} }}{\beta }\left( {\frac{{\varphi^{\prime}_{21} }}{{T_{c1} }} - \frac{{\varphi ^{\prime}_{11} }}{{T_{c2} }}} \right) + l_{1} \varphi ^{\prime}_{21} \omega_{1}^{3} \lambda_{t} }}{{\left( {\omega_{1} } \right)^{4} + \left( {\lambda_{t} \omega_{1} } \right)^{2} }}$$
    (71e,f)
    $$G_{r4} = \frac{{\frac{{\omega_{2}^{2} l_{1} }}{\beta }\left( {\frac{{\varphi^{\prime}_{22} }}{{T_{c2} }} - \frac{{\varphi ^{\prime}_{21} }}{{T_{c1} }}} \right)\lambda_{t} + l_{1} \varphi ^{\prime}_{22} \omega_{2}^{4} }}{{\left( {\omega_{2} } \right)^{4} + \left( {\lambda_{t} \omega_{2} } \right)^{2} }} , \;G_{m4} = \frac{{\frac{{\omega_{2}^{3} l_{1} }}{\beta }\left( {\frac{{\varphi^{\prime}_{22} }}{{T_{c1} }} - \frac{{\varphi ^{\prime}_{12} }}{{T_{c2} }}} \right) + l_{1} \varphi ^{\prime}_{22} \omega_{2}^{3} \lambda_{t} }}{{\left( {\omega_{2} } \right)^{4} + \left( {\lambda_{t} \omega_{2} } \right)^{2} }}.$$
    (71g,h)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharifi-Moghaddam, S., Tikani, R. & Ziaei-Rad, S. Energy harvesting from nonlinear vibrations of an L-shaped beam using piezoelectric patches. J Braz. Soc. Mech. Sci. Eng. 43, 158 (2021). https://doi.org/10.1007/s40430-021-02843-7

Download citation

Keywords

  • Energy harvesting
  • L-shaped beam
  • Nonlinear vibrations
  • Piezoelectric patch