A numerical investigation on low velocity impact response of polymer-based nanocomposite plates containing multiscale reinforcements


The hybridization of carbon fibers (CFs) with carbon nanotubes (CNTs) is a new way of improving the mechanical and physical performances of composite materials. The aim of this work is to evaluate the low velocity impact response of polymer-based hybrid composite plates reinforced by the chopped CFs and CNTs using finite element method (FEM). A nested micromechanical FEM considering interphase region created by the non-bonded van der Waals interactions between the CNTs and polymer is developed for predicting the mechanical properties of hybrid composites. The predictions of the proposed numerical model are compared with the results of experiment and other numerical methods. It is demonstrated that adding a small amount of CNTs into the chopped CF-reinforced polymer composites can increase the contact force and decrease the center deflection of hybrid composite plates. The influences of volume fractions of CF and CNT, thickness and elastic modulus of interphase region, diameter and initial velocity of projectile, dimensions and boundary conditions of plate on the dynamic response of hybrid composite structures are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    Iijima S (1991) Helical microtubules of graphitic carbon nature 354(6348):56

    Google Scholar 

  2. 2.

    Alam P, Mamalis D, Robert C, Floreani C, Brádaigh CMÓ (2019) The fatigue of carbon fibre reinforced plastics: a review. Compos B Eng 166:555–579

    Google Scholar 

  3. 3.

    Akbarzadeh M, Farshidianfar A, Tahani M (2016) Nonlinear free and forced vibrations of curved single walled carbon nanotube on a Pasternak elastic foundation. Scientia iranica 23(6):3087–3098

    Google Scholar 

  4. 4.

    Hassanzadeh-Aghdam MK, Mahmoodi MJ, Kazempour MR (2018) The role of thermal residual stress on the yielding behavior of carbon nanotube–aluminum nanocomposites. Int J Mech Mater Des 14(2):263–275

    Google Scholar 

  5. 5.

    Pashaki PV, Ji JC (2020) Nonlocal nonlinear vibration of an embedded carbon nanotube conveying viscous fluid by introducing a modified variational iteration method. J Braz Soc Mech Sci Eng 42(4):1–13

    Google Scholar 

  6. 6.

    Hassanzadeh-Aghdam MK, Ansari R, Mahmoodi MJ (2019) Thermo-mechanical properties of shape memory polymer nanocomposites reinforced by carbon nanotubes. Mech Mater 129:80–98

    Google Scholar 

  7. 7.

    Ansari R, Rouhi S, Nikkar A (2019) Investigation of the vibrational characteristics of single-walled carbon nanotube/polymer nanocomposites using finite element method. J Braz Soc Mech Sci Eng 41(1):57

    Google Scholar 

  8. 8.

    Hassanzadeh-Aghdam MK, Ansari R, Darvizeh A (2019) Micromechanics-based thermoelastic analysis of polyimide nanocomposites containing 3D randomly oriented carbon nanotubes. Iran J Sci Technol Trans Mech Eng 43(1):27–39

    Google Scholar 

  9. 9.

    Li K, Gao XL, Roy AK (2006) Micromechanical modeling of viscoelastic properties of carbon nanotube-reinforced polymer composites. Mech Adv Mater Struct 13(4):317–328

    Google Scholar 

  10. 10.

    Mathur RB, Chatterjee S, Singh BP (2008) Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties. Compos Sci Technol 68(7–8):1608–1615

    Google Scholar 

  11. 11.

    Hornbostel B, Pötschke P, Kotz J, Roth S (2008) Mechanical properties of triple composites of polycarbonate, single-walled carbon nanotubes and carbon fibres. Physica E 40(7):2434–2439

    Google Scholar 

  12. 12.

    Dabbagh A, Rastgoo A, Ebrahimi F (2019) Finite element vibration analysis of multi-scale hybrid nanocomposite beams via a refined beam theory. Thin-Walled Struct 140:304–317

    Google Scholar 

  13. 13.

    Yao SS, Jin FL, Rhee KY, Hui D, Park SJ (2018) Recent advances in carbon-fiber-reinforced thermoplastic composites: a review. Compos B Eng 142:241–250

    Google Scholar 

  14. 14.

    Antin KN, Laukkanen A, Andersson T, Smyl D, Vilaça P (2019) A multiscale modelling approach for estimating the effect of defects in unidirectional carbon fiber reinforced polymer composites. Materials 12(12):1885

    Google Scholar 

  15. 15.

    An F, Lu C, Li Y, Guo J, Lu X, Lu H, Yang Y (2012) Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite. Mater Des 33:197–202

    Google Scholar 

  16. 16.

    Shazed MA, Suraya AR, Rahmanian S, Salleh MM (2014) Effect of fibre coating and geometry on the tensile properties of hybrid carbon nanotube coated carbon fibre reinforced composite. Mater Des 1980–2015(54):660–669

    Google Scholar 

  17. 17.

    Mausam K, Sharma K, Bharadwaj G, Singh RP (2019) Multi-objective optimization design of die-sinking electric discharge machine (EDM) machining parameter for CNT-reinforced carbon fibre nanocomposite using grey relational analysis. J Braz Soc Mech Sci Eng 41(8):348

    Google Scholar 

  18. 18.

    Kepple KL, Sanborn GP, Lacasse PA, Gruenberg KM, Ready WJ (2008) Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes. Carbon 46(15):2026–2033

    Google Scholar 

  19. 19.

    Pal G, Kumar S (2016) Multiscale modeling of effective electrical conductivity of short carbon fiber-carbon nanotube-polymer matrix hybrid composites. Mater Des 89:129–136

    Google Scholar 

  20. 20.

    Lutz V, Duchet-Rumeau J, Godin N, Smail F, Lortie F, Gérard JF (2018) Ex-PAN carbon fibers vs carbon nanotubes fibers: From conventional epoxy based composites to multiscale composites. Eur Polymer J 106:9–18

    Google Scholar 

  21. 21.

    Kundalwal SI, Ray MC (2012) Effective properties of a novel composite reinforced with short carbon fibers and radially aligned carbon nanotubes. Mech Mater 53:47–60

    Google Scholar 

  22. 22.

    Rahmanian S, Thean KS, Suraya AR, Shazed MA, Salleh MM, Yusoff HM (2013) Carbon and glass hierarchical fibers: influence of carbon nanotubes on tensile, flexural and impact properties of short fiber reinforced composites. Mater Des 43:10–16

    Google Scholar 

  23. 23.

    Rahmanian S, Suraya AR, Shazed MA, Zahari R, Zainudin ES (2014) Mechanical characterization of epoxy composite with multiscale reinforcements: carbon nanotubes and short carbon fibers. Mater Des 60:34–40

    Google Scholar 

  24. 24.

    Haghgoo M, Ansari R, Hassanzadeh-Aghdam MK (2019) Prediction of electrical conductivity of carbon fiber-carbon nanotube-reinforced polymer hybrid composites. Compos B Eng 167:728–735

    Google Scholar 

  25. 25.

    Tuo H, Lu Z, Ma X, Xing J, Zhang C (2019) Damage and failure mechanism of thin composite laminates under low-velocity impact and compression-after-impact loading conditions. Compos B Eng 163:642–654

    Google Scholar 

  26. 26.

    Yao L, Sun G, He W, Meng X, Xie D (2019) Investigation on impact behavior of FMLs under multiple impacts with the same total energy: experimental characterization and numerical simulation. Compos Struct 226:111218

    Google Scholar 

  27. 27.

    He W, Lu S, Yi K, Wang S, Sun G, Hu Z (2019) Residual flexural properties of CFRP sandwich structures with aluminum honeycomb cores after low-velocity impact. Int J Mech Sci 161:105026

    Google Scholar 

  28. 28.

    He W, Liu J, Wang S, Xie D (2018) Low-velocity impact response and post-impact flexural behaviour of composite sandwich structures with corrugated cores. Compos Struct 189:37–53

    Google Scholar 

  29. 29.

    He W, Yao L, Meng X, Sun G, Xie D, Liu J (2019) Effect of structural parameters on low-velocity impact behavior of aluminum honeycomb sandwich structures with CFRP face sheets. Thin-Walled Struct 137:411–432

    Google Scholar 

  30. 30.

    Richardson MOW, Wisheart MJ (1996) Review of low-velocity impact properties of composite materials. Compos A Appl Sci Manuf 27(12):1123–1131

    Google Scholar 

  31. 31.

    Song ZG, Zhang LW, Liew KM (2016) Dynamic responses of CNT reinforced composite plates subjected to impact loading. Compos B Eng 99:154–161

    Google Scholar 

  32. 32.

    Chang BH, Liu ZQ, Sun LF, Tang DS, Zhou WY, Wang G, Wan MX (2000) Conductivity and magnetic susceptibility of nanotube/polypyrrole nanocomposites. J Low Temp Phys 119(1–2):41–48

    Google Scholar 

  33. 33.

    Liao K, Li S (2001) Interfacial characteristics of a carbon nanotube–polystyrene composite system. Appl Phys Lett 79(25):4225–4227

    Google Scholar 

  34. 34.

    Tsai JL, Tzeng SH, Chiu YT (2010) Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation. Compos B Eng 41(1):106–115

    Google Scholar 

  35. 35.

    Wei C (2006) Adhesion and reinforcement in carbon nanotube polymer composite. Appl Phys Lett 88(9):093108

    Google Scholar 

  36. 36.

    Hassanzadeh-Aghdam MK, Mahmoodi MJ, Ansari R, Darvizeh A (2019) Interphase influences on the mechanical behavior of carbon nanotube–shape memory polymer nanocomposites: A micromechanical approach. J Intell Mater Syst Struct 30(3):463–478

    Google Scholar 

  37. 37.

    Gou J, Minaie B, Wang B, Liang Z, Zhang C (2004) Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites. Comput Mater Sci 31(3–4):225–236

    Google Scholar 

  38. 38.

    Hassanzadeh-Aghdam MK, Mahmoodi MJ, Ansari R (2019) Creep performance of CNT polymer nanocomposites-An emphasis on viscoelastic interphase and CNT agglomeration. Compos B Eng 168:274–281

    Google Scholar 

  39. 39.

    Zare Y (2015) Effects of interphase on tensile strength of polymer/CNT nanocomposites by Kelly-Tyson theory. Mech Mater 85:1–6

    Google Scholar 

  40. 40.

    Kulkarni M, Carnahan D, Kulkarni K, Qian D, Abot JL (2010) Elastic response of a carbon nanotube fiber reinforced polymeric composite: a numerical and experimental study. Compos B Eng 41(5):414–421

    Google Scholar 

  41. 41.

    Yang CH, Ma WN, Ma DW (2018) Low-velocity impact analysis of carbon nanotube reinforced composite laminates. J Mater Sci 53(1):637–656

    Google Scholar 

  42. 42.

    Malekzadeh P, Dehbozorgi M (2016) Low velocity impact analysis of functionally graded carbon nanotubes reinforced composite skew plates. Compos Struct 140:728–748

    Google Scholar 

  43. 43.

    Selim BA, Zhang LW, Liew KM (2017) Impact analysis of CNT-reinforced composite plates based on Reddy’s higher-order shear deformation theory using an element-free approach. Compos Struct 170:228–242

    Google Scholar 

  44. 44.

    Manchado ML, Valentini L, Biagiotti J, Kenny JM (2005) Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing. Carbon 43(7):1499–1505

    Google Scholar 

  45. 45.

    Selmi A, Friebel C, Doghri I, Hassis H (2007) Prediction of the elastic properties of single walled carbon nanotube reinforced polymers: A comparative study of several micromechanical models. Compos Sci Technol 67(10):2071–2084

    Google Scholar 

  46. 46.

    Pan Y, Weng GJ, Meguid SA, Bao WS, Zhu ZH, Hamouda AMS (2013) Interface effects on the viscoelastic characteristics of carbon nanotube polymer matrix composites. Mech Mater 58:1–11

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to R. Ansari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Technical Editor: João Marciano Laredo dos Reis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rasoolpoor, M., Ansari, R. & Hassanzadeh-Aghdam, M.K. A numerical investigation on low velocity impact response of polymer-based nanocomposite plates containing multiscale reinforcements. J Braz. Soc. Mech. Sci. Eng. 43, 91 (2021). https://doi.org/10.1007/s40430-021-02824-w

Download citation


  • Hybrid composite plate
  • Carbon nanotube
  • Low velocity impact
  • Finite element method
  • Nested model