Diverter damper force analysis and stress intensity factors for its double fillet welds by boundary element method

Abstract

Mechanisms usually transmit power by welded links into a shaft. Should this weld be partial, like fillet welds, there will be an area of stress concentration that could behave like a crack due to sharp corners. These can lead to structural failures due to fatigue. Consequently, to properly design, inspect and maintain these mechanisms it is necessary to use fracture mechanics stress intensity factors. The crack mesh simplicity required by the boundary element method allows easy modeling even for complex geometry. This technique will be used to obtain such parameters for a double fillet weld found in a diverter damper mechanism responsible for controlling hot gas flow to heat recovery steam generator in power plants. But the solutions presented can be used for similar geometrical configurations, specially to shaft link mechanisms. Empirical equations were also obtained to further ease fracture mechanics and fatigue analysis for this kind of geometry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Code availability

Custom code (CABEMT) not available.

Notes

  1. 1.

    With quadratic displacement interpolation and linear geometry interpolation.

  2. 2.

    Indeed BS-7910 says to set \(\frac{1+\upsilon }{1-{\upsilon }^{2}}=1\), which results in a conservative approach.

References

  1. 1.

    Yadav N, Khan IA, Grover S (2012) Structural modeling of a typical gas turbine system. Fontiers Energy 6:57–79. https://doi.org/10.1007/s11708-011-0164-8

    Article  Google Scholar 

  2. 2.

    Blankinship S (2001) On–site power generation converts bio–waste to free fuel. Power Eng 105:55–60

    Google Scholar 

  3. 3.

    Sheets BA, Takabut K (1993) Combined cycle meets Thailand’s growing power demands. Power Eng 97:41–44

    Google Scholar 

  4. 4.

    Carson B, Pearson M, Grover J, Paterson S, Anderson R (2009) Optimization of heat recovery steam generator startup and shutdown in F–Class units: avoidance of cracking in thick–section pressure parts. Electric Power Research Institute, Palo Alto, CA, Technical report number 1015464

  5. 5.

    Benachour M, Benguediab M, Hadjoui A, Hadjoui F, Benachour N (2008) Fatigue crack growth of a double fillet weld. Comput Mater Sci 44(2):489–495. https://doi.org/10.1016/j.commatsci.2008.04.015

    Article  Google Scholar 

  6. 6.

    Sleczka L (2004) Low cycle fatigue strength assessment of butt and fillet weld connections. J Constr Steel Res 60:701–712. https://doi.org/10.1016/S0143-974X0300137-8

    Article  Google Scholar 

  7. 7.

    Al–Mukhtar A, Biermann H, Henkel S, Hübner P (2009) Comparison of the stress intensity factor of load–carrying cruciform welded joints with different geometries. J Mater Eng Perform 19:802–809. https://doi.org/10.1007/s1166500995521

    Article  Google Scholar 

  8. 8.

    Sumi Y, Nakamura M, Mohri M (2010) Crack paths in weld details under combined normal and shear loading. Eng Fract Mech 77:2115–2125. https://doi.org/10.1016/j.engfracmech.2010.02.017

    Article  Google Scholar 

  9. 9.

    Aliya D, Raphael J (2008) Cracking tendencies in fillet welds. J Fail Anal Prev 8:207–212. https://doi.org/10.1007/s11668-008-9129-6

    Article  Google Scholar 

  10. 10.

    Ajaei BB, Ghassemieh M (2015) Reinforcing fillet welds preventing cracks in partial joint penetration welds. Int J Steel Struct 15:487–497. https://doi.org/10.1007/s13296-015-6017-2

    Article  Google Scholar 

  11. 11.

    Weaver MA (1999) Determination of weld loads and throat requirements using finite element analysis with shell element models – a comparison with classical analysis. Weld J Weld Res Suppl 78(4):116s–126s

    Google Scholar 

  12. 12.

    Tsai C L, Tsai M J, McCauley R B (1998) Stress analysis and design of double fillet–welded T–joints. Weld Res Suppl. https://files.aws.org/wj/supplement/WJ_1998_02_s94.pdf

  13. 13.

    Schiara L, Ribeiro GO (2019) Finite element mesh generation for fracture mechanics in 3D coupled with ansys®: elliptical cracks and lack of fusion in nozzle welds. J Brazilian Soc Mech Sci Eng 38:253–263. https://doi.org/10.1007/s40430-015-0324-6

    Article  Google Scholar 

  14. 14.

    Rabold F, Kuna M (2014) Automated finite element simulation of fatigue crack growth in three–dimensional structures with the software system procrack. Procedia Mater Sci 3:1099–1104. https://doi.org/10.1016/j.mspro.2014.06.179

    Article  Google Scholar 

  15. 15.

    Liu Y (2009) Fast multipole boundary element method. Cambridge University Press, Cambridge

    Google Scholar 

  16. 16.

    Florian M, Sorensen JD (2015) Wind turbine blade life–time assessment model for preventive planning of operation and maintenance. J Marine Sci Eng 3:1027–1040. https://doi.org/10.3390/jmse3031027

    Article  Google Scholar 

  17. 17.

    Georgievskaia E (2019) Hydraulic turbines lifetime in terms of fracture mechanics. Eng Fail Anal 105:1296–1305. https://doi.org/10.1016/j.engfailanal.2019.08.003

    Article  Google Scholar 

  18. 18.

    Plu J, Bondeaux S, Boulanger D, Heyder R (2009) Application of fracture mechanics methods to rail design and maintenance. Eng Fract Mech 76:2602–2611. https://doi.org/10.1016/j.engfracmech.2009.02.025

    Article  Google Scholar 

  19. 19.

    Guo T, Chen YW (2013) Fatigue reliability analysis of steel bridge details based on field–monitored data and linear elastic fracture mechanics. Struct Infrastruct Eng 9:496–505. https://doi.org/10.1080/15732479.2011.568508

    Article  Google Scholar 

  20. 20.

    Pitner P, Riffard T, Granger B, Flesch B (1993) Application of probabilistic fracture mechanics to optimize the maintenance of PWR steam generators tubes. Nucl Eng Des 142:89–100. https://doi.org/10.1016/0029-54939390032-5

    Article  Google Scholar 

  21. 21.

    Maeda N, Nakagawa S, Yagawa G, Yoshimura S (2001) Optimization of operation and maintenance of nuclear power plant by probabilistic fracture mechanics. Nucl Eng Des 214:1–12. https://doi.org/10.1016/S0029-54930200009-2

    Article  Google Scholar 

  22. 22.

    Yusoff MZ, Mamat ZA (2005) Computational fluid dynamics simulations of flows and pressure distributions in a 96 mw combined cycle diverter damper. J Indus Technol 14:87–96

    Google Scholar 

  23. 23.

    Brebbia CA, Dominguez J, Tassoulas JL (1991) Boundary elements: an introductory course. J Appl Mech 10:80

    Google Scholar 

  24. 24.

    Aliabadi MH (2002) The boundary element method: applications in solids and structures. Wiley, Amsterdam

    Google Scholar 

  25. 25.

    Cisilino AP, Aliabadi MH (1997) Three–dimensional BEM analysis for fatigue crack growth in welded components. J Press Vessel Pip 70:135–144. https://doi.org/10.1016/S0308-01619600031-2

    Article  Google Scholar 

  26. 26.

    Mi Y, Aliabadi MH (1992) Dual boundary element method for three–dimensional fracture mechanics analysis. Anal Bound Elem Eng 10:161. https://doi.org/10.1016/0955-79979290047-B

    Article  Google Scholar 

  27. 27.

    Souza VJB (2001) Algorítimos de integração eficientes para o método dos elementos de contorno tridimensional. Universidade de São Paulo, Brazil. https://www.teses.usp.br/teses/disponiveis/18/18134/tde-17062001-095633/

  28. 28.

    Li HB, Han GM, Mang HA (1985) A new method for evaluating singular integrals in stress analysis of solids by the direct boundary element method. J Numer Method Eng Int 21:2071–2098. https://doi.org/10.1002/nme.1620211109

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Hayami K, Matsumoto H (1994) A numerical quadrature for nearly singular boundary element integrals. Anal Bound Elem Eng 13:143–154. https://doi.org/10.1016/0955-7997(94)90017-5

    Article  Google Scholar 

  30. 30.

    Hayami K (2005), Variable transformations for nearly singular integrals in the boundary element method, NII Technical Reports.

  31. 31.

    Anderson TL (2005) Fracture mechanics: fundamentals and applications. CRC Press, Boca Raton

    Google Scholar 

  32. 32.

    BS–7910 (2013) Guide to methods for assessing the acceptability of flaws in metallic structures, BSI Stand. Publ., https://doi.org/https://doi.org/10.1007/s13398-014-0173-72

  33. 33.

    Perez N (2017) Fracture mechanics. Kluwer, New York

    Google Scholar 

Download references

Funding

Not applicable.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Leandro de Souza Schiara.

Ethics declarations

Conflicts of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Technical Editor: Paulo de Tarso Rocha de Mendonça.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Souza Schiara, L., Paschoalini, A.T. Diverter damper force analysis and stress intensity factors for its double fillet welds by boundary element method. J Braz. Soc. Mech. Sci. Eng. 43, 114 (2021). https://doi.org/10.1007/s40430-021-02812-0

Download citation

Keywords

  • Boundary element method
  • Crack
  • Fillet weld
  • Diverter damper
  • Fracture mechanics
  • Stress intensity factor