The effect of subgrid-scale modeling on LES of turbulent coaxial jets

Abstract

Large eddy simulation (LES) is an efficient technique to simulate turbulent flows of practical interest, based on the elimination of flow scales smaller than a characteristic length and direct resolution of the largest scales. There is a variety of subgrid-scale models available in the literature to describe the turbulence in small scales, with different levels of complexity and computational cost. Although many advances have been achieved since the development of the LES technique, there is still no consensus on a definitive subgrid model for generic use in engineering applications. The objective of this work is to analyze the effect of subgrid modeling in LES of turbulent coaxial jets. Simulations were carried out for a test problem using the Smagorinsky, Germano and velocity structure function models, and results were compared with experimental data from the literature. The best results for average properties were found with the Smagorinsky model with an optimal ad hoc coefficient, while the dynamic model of Germano was the one that best described the turbulent features. These results show that this type of comparative analysis is of fundamental importance to obtain reliable results when addressing new problems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Abramovich G (1963) The theory of turbulent jets. Ph.D. thesis, MIT Press, Massachusetts Institute of technology

  2. 2.

    Amielh M, Djeridane T, Anselmet F, Fulachier L (1996) Velocity near-field of variable density turbulent jets. Int J Heat Mass Transf 39(10):2149–2164

    Article  Google Scholar 

  3. 3.

    Andersson N, Eriksson LE, Davidson L (2005) Effects of inflow conditions and subgrid model on les for turbulent jets. In: 11th AIAA/CEAS aeroacoustics conference. p 2925

  4. 4.

    Bardina J, Ferziger JH, Reynolds WC (1980) Improved subgrid-scale models for large-eddy simulation. In: American Institute of aeronautics and astronautics, fluid and plasma dynamics conference, 13th, Snowmass, July 14–16, 1980

  5. 5.

    Batchelor GK (1953) The theory of homogeneous turbulence. Cambridge University Press, Cambridge

    Google Scholar 

  6. 6.

    Blazek J (2015) Computational fluid dynamics: principles and applications. Butterworth-Heinemann, Oxford

    Google Scholar 

  7. 7.

    Bodony DJ, Lele SK (2008) Current status of jet noise predictions using large-eddy simulation. AIAA J 46(2):364–380

    Article  Google Scholar 

  8. 8.

    Bogey C, Bailly C (2003) Les of a high reynolds, high subsonic jet: effects of the subgrid modellings on flow and noise. In: 16th AIAA computational fluid dynamics conference. p 3557

  9. 9.

    Brès GA, Lele SK (2019) Modelling of jet noise: a perspective from large-eddy simulations. Philos Trans R Soc A 377(2159):20190081

    MathSciNet  Article  Google Scholar 

  10. 10.

    Chen CJ, Rodi W (1980) Vertical turbulent buoyant jets: a review of experimental data. NASA Sti/Recon technical report A 80

  11. 11.

    Chollet JP, Lesieur M (1981) Parameterization of small scales of three-dimensional isotropic turbulence utilizing spectral closures. J Atmos Sci 38(12):2747–2757

    Article  Google Scholar 

  12. 12.

    Deardorff JW (1970) A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J Fluid Mech 41(2):453–480

    Article  Google Scholar 

  13. 13.

    Djeridane T, Amielh M, Anselmet F, Fulachier L (1996) Velocity turbulence properties in the near-field region of axisymmetric variable density jets. Phys Fluids 8(6):1614–1630

    Article  Google Scholar 

  14. 14.

    Ferziger JH, Peric M (2012) Computational methods for fluid dynamics. Springer, Berlin

    Google Scholar 

  15. 15.

    Fortuna AdO (2000) Técnicas computacionais para dinâminca dos fluidos: conceitos básicos e aplicações. Edusp

  16. 16.

    Fureby C, Tabor G, Weller H, Gosman A (1997) A comparative study of subgrid scale models in homogeneous isotropic turbulence. Phys Fluids 9(5):1416–1429

    MathSciNet  Article  Google Scholar 

  17. 17.

    Germano M (1990) Averaging invariance of the turbulent equations and similar subgrid scale modeling. CTR Manus 116

  18. 18.

    Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3(7):1760–1765

    Article  Google Scholar 

  19. 19.

    Hirt C et al (1975) Sola: a numerical solution algorithm for transient fluid flows. Technical reports Alamos Scientific Lab, USA

  20. 20.

    Ilyushin B, Krasinsky D (2006) Large eddy simulation of the turbulent round jet dynamics. Thermophys Aeromech 13(1):43–54

    Article  Google Scholar 

  21. 21.

    Jones S, Sotiropoulos F, Sale M (2002) Large-eddy simulation of turbulent circular jet flows. EERE Publication and Product Library, Washington, DC (United States), Technical report

  22. 22.

    Kuo KKy, Acharya R, (2012) Fundamentals of turbulent and multi-phase combustion. Wiley, London

  23. 23.

    Lesieur M (2012) Turbulence in fluids, vol 40. Springer, Berlin

    Google Scholar 

  24. 24.

    Lesieur M, Métais O, Comte P (2005) Large-eddy simulations of turbulence. Cambridge University Press, Cambridge

    Google Scholar 

  25. 25.

    Lilly DK (1992) A proposed modification of the germano subgrid-scale closure method. Phys Fluids A 4(3):633–635

    MathSciNet  Article  Google Scholar 

  26. 26.

    Lipari G, Stansby PK (2011) Review of experimental data on incompressible turbulent round jets. Flow Turbul Combust 87(1):79–114

    Article  Google Scholar 

  27. 27.

    Löffler M, Pfadler S, Beyrau F, Leipertz A, Dinkelacker F, Huai Y, Sadiki A (2008) Experimental determination of the sub-grid scale scalar flux in a non-reacting jet-flow. Flow Turbul Combust 81(1):205–219

    Article  Google Scholar 

  28. 28.

    Markesteijn AP, Karabasov SA (2018) GPU CABARET solutions for the cojen jet noise experiment. In: 2018 AIAA/CEAS aeroacoustics conference. p 3921

  29. 29.

    McMillan O (1980) Tests of new subgrid-scale models in strained turbulence. aiaa paper aiaa-80-1339. In: AIAA 13th fluid and plasma dynamics conference, Snowmass, Co

  30. 30.

    Meneveau C, Katz J (2000) Scale-invariance and turbulence models for large-eddy simulation. Annu Rev Fluid Mech 32(1):1–32

    MathSciNet  Article  Google Scholar 

  31. 31.

    Métais O, Lesieur M (1992) Spectral large-eddy simulation of isotropic and stably stratified turbulence. J Fluid Mech 239:157–194

    MathSciNet  Article  Google Scholar 

  32. 32.

    Moin P, Squires K, Cabot W, Lee S (1991) A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys Fluids A 3(11):2746–2757

    Article  Google Scholar 

  33. 33.

    Payri R, López JJ, Martí-Aldaraví P, Giraldo JS (2016) Effect of turbulent model closure and type of inlet boundary condition on a large eddy simulation of a non-reacting jet with co-flow stream. Int J Heat Fluid Flow 61:545–552

    Article  Google Scholar 

  34. 34.

    Pierce CD (2011) Progress-variable approach for large-eddy simulation of turbulent combustion. Ph.D. thesis, Stanford University

  35. 35.

    Pierce CD, Moin P (2004) Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J Fluid Mech 504:73–97

    MathSciNet  Article  Google Scholar 

  36. 36.

    Pinho J, Muniz AR (2020) PMLES: a hybrid openMP CUDA source code for LES of turbulent flows. J Appl Fluid Mech 13(4):1067–1079

    Article  Google Scholar 

  37. 37.

    Piomelli U (1999) Large-eddy simulation: achievements and challenges. Prog Aerosp Sci 35(4):335–362

    Article  Google Scholar 

  38. 38.

    Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    Google Scholar 

  39. 39.

    Quadros AER (2016) Processamento paralelo em cuda aplicado ao modelo de geração de cenários sintéticos de vazões e energias-gevazp. Ph.D. thesis, Universidade Federal do Rio de Janeiro

  40. 40.

    Ruetsch G, Fatica M (2011) Cuda fortran for scientists and engineers. NVIDIA Corporation 2701

  41. 41.

    Sagaut P (2006) Large eddy simulation for incompressible flows: an introduction. Springer, Berlin

    Google Scholar 

  42. 42.

    Salkhordeh S, Mazumdar S, Landfried DT, Jana A, Kimber ML (2014) Les of an isothermal high reynolds number turbulent round jet. In: 2014 22nd international conference on nuclear engineering. American Society of Mechanical Engineers Digital Collection

  43. 43.

    Schmitt FG (2007) About boussinesq’s turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity. C R Mécanique 335(9–10):617–627

    Article  Google Scholar 

  44. 44.

    Smagorinsky J (1963) General circulation experiments with the primitive equations: I. The basic experiment. Mon Weather Rev 91(3):99–164

    Article  Google Scholar 

  45. 45.

    Tennekes H, Lumley JL (1972) A first course in turbulence. MIT press, London

    Google Scholar 

  46. 46.

    Terrana S, Nguyen C, Peraire J (2020) Gpu-accelerated large eddy simulation of hypersonic flows. In: AIAA Scitech 2020 forum. p 1062

  47. 47.

    Uzun A, Blaisdell GA, Lyrintzis AS (2003) Sensitivity to the smagorinsky constant in turbulent jet simulations. AIAA J 41(10):2077–2079

    Article  Google Scholar 

  48. 48.

    Wang P, Fröhlich J, Michelassi V, Rodi W (2008) Large-eddy simulation of variable-density turbulent axisymmetric jets. Int J Heat Fluid Flow 29(3):654–664

    Article  Google Scholar 

  49. 49.

    Wilson RV, Demuren AO (1997) Numerical simulation of turbulent jets with rectangular cross-section. 97. National Aeronautics and Space Administration, Langley Research Center

  50. 50.

    Wilson T et al (1988) Sola-dm: A numerical solution algorithm for transient three-dimensional flows. Technical report, Los Alamos National Lab

Download references

Acknowledgements

The authors acknowledge CAPES for financial support through PROEX/CAPES program, and the National Supercomputing Center (CESUP-UFRGS) and the National Laboratory for Scientific Computing (SDumont supercomputer, LNCC/MCTI, Brazil) for providing computational resources for the calculations reported in this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. M. Pinho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Technical Editor: Daniel Onofre de Almeida Cruz.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 129 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pinho, J.M., Muniz, A.R. The effect of subgrid-scale modeling on LES of turbulent coaxial jets. J Braz. Soc. Mech. Sci. Eng. 43, 63 (2021). https://doi.org/10.1007/s40430-021-02798-9

Download citation

Keywords

  • Subgrid modeling
  • LES
  • Numerical simulation
  • Turbulence