Empirical correlations for thermal conductivity and dynamic viscosity of MgO-EG


In this study, the thermal conductivity and dynamic viscosity of MgO-Ethylene Glycol nanofluid are investigated. MgO nanoparticles with three diameters of 20, 50, and 100 nm are used to prepare nanofluids. Ethylene Glycol and nanofluid with particle volume fraction of 0.25%, 0.5%, 0.75% and 1% are used as working fluid. The experiments are conducted in the temperature range of 25 to 50 °C with volume fraction up to 1%. The results have shown that thermal conductivity and dynamic viscosity increase by an increase in volume fraction and a decrease in particles’ diameter, while the temperature effect on thermal conductivity and dynamic viscosity are incremental and decremental, respectively. Moreover, the sensitivity of the thermal conductivity and dynamic viscosity to variations in key parameters such as temperature volume fraction and particles’ diameter is measured. Based on the experimental data and using multivariate linear regression method, new correlations were proposed to predict the thermal conductivity and dynamic viscosity of the nanofluid. The R-squared (R2) values of the thermal conductivity and dynamic viscosity correlations were equal to 0.984 and 0.993, respectively. The results present that these correlations have higher accuracy in predicting the thermal conductivity and dynamic viscosity of the nanofluid compared to theoretical relations and other existing empirical valid relations. Therefore, these correlations are introduced as the best relationships for predicting the thermal conductivity and dynamic viscosity properties of the experimented nanofluid.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11



Ethylene Glycol


Magnesium oxide


Scanning electron microscopy


Particles’ diameter (nm)


Conductive heat transfer coefficient (W m1 K1)


Temperature (°C)


Dynamic viscosity (N s m−2)


Nanoparticle volume fraction


Base fluid






  1. 1.

    Huminic G, Huminic A (2012) Application of nanofluids in heat exchangers: a review. Renew Sustain Energy Rev 16(8):5625–5638

    MATH  Google Scholar 

  2. 2.

    Choi SU, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab, IL

    Google Scholar 

  3. 3.

    Ghafouri A, Salari M (2014) Numerical investigation of the heat transfer enhancement using various viscosity models in chamber filled with water–CuO nanofluid. J Braz Soc Mech Sci Eng 36(4):825–836

    Google Scholar 

  4. 4.

    Ghafouri A, Salari M, Jozaei A (2017) Effect of variable thermal conductivity models on the combined convection heat transfer in a square enclosure filled with a water–alumina nanofluid. J Appl Mech Tech Phys 58(1):103–115

    MathSciNet  Google Scholar 

  5. 5.

    Meybodi MK, Daryasafar A, Koochi MM, Moghadasi J, Meybodi RB, Ghahfarokhi AK (2016) A novel correlation approach for viscosity prediction of water based nanofluids of Al2O3, TiO2, SiO2 and CuO. J Taiwan Institute Chem Eng 58:19–27

    Google Scholar 

  6. 6.

    Yiamsawasd T, Dalkilic AS, Wongwises S (2012) Measurement of the thermal conductivity of titania and alumina nanofluids. Thermochim Acta 545:48–56

    Google Scholar 

  7. 7.

    Esfe MH, Saedodin S (2014) An experimental investigation and new correlation of viscosity of ZnO–EG nanofluid at various temperatures and different solid volume fractions. Exp Thermal Fluid Sci 55:1–5

    Google Scholar 

  8. 8.

    Azmi W, Sharma K, Mamat R, Najafi G, Mohamad M (2016) The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids–A review. Renew Sustain Energy Rev 53:1046–1058

    Google Scholar 

  9. 9.

    Katpatal DC, Andhare AB, Padole PM, Khedkar RS (2017) Study of dispersion stability and thermo-physical properties of CuO-Jatropha oil-based nanolubricants. J Braz Soc Mech Sci Eng 39(9):3657–3668

    Google Scholar 

  10. 10.

    Moreira TA, Moreira DC, Ribatski G (2018) Nanofluids for heat transfer applications: a review. J Braz Soc Mech Sci Eng 40(6):303

    Google Scholar 

  11. 11.

    Nair V, Parekh A, Tailor P (2020) Performance analysis of Al. J Braz Soc Mech Sci Eng 42(350):350

    Google Scholar 

  12. 12.

    Arani AAA, Pourmoghadam F (2019) Experimental investigation of thermal conductivity behavior of MWCNTS-Al 2 O 3/ethylene glycol hybrid Nanofluid: Providing new thermal conductivity correlation. Heat Mass Transf 55(8):2329–2339

    Google Scholar 

  13. 13.

    LotfizadehDehkordi B, Kazi S, Hamdi M, Ghadimi A, Sadeghinezhad E, Metselaar H (2013) Investigation of viscosity and thermal conductivity of alumina nanofluids with addition of SDBS. Heat Mass Transf 49(8):1109–1115

    Google Scholar 

  14. 14.

    Motevasel M, Nazar ARS, Jamialahmadi M (2018) The effect of nanoparticles aggregation on the thermal conductivity of nanofluids at very low concentrations: experimental and theoretical evaluations. Heat Mass Transf 54(1):125–133

    Google Scholar 

  15. 15.

    Yoo D, Lee J, Lee B, Kwon S, Koo J (2018) Further elucidation of nanofluid thermal conductivity measurement using a transient hot-wire method apparatus. Heat Mass Transf 54(2):415–424

    Google Scholar 

  16. 16.

    Mousavi S, Esmaeilzadeh F, Wang X (2019) Effects of temperature and particles volume concentration on the thermophysical properties and the rheological behavior of CuO/MgO/TiO2 aqueous ternary hybrid nanofluid. J Therm Anal Calorim 137(3):879–901

    Google Scholar 

  17. 17.

    Moldoveanu GM, Minea AA, Huminic G, Huminic A (2019) Al 2 O 3/TiO 2 hybrid nanofluids thermal conductivity. J Therm Anal Calorim 137(2):583–592

    Google Scholar 

  18. 18.

    Esfe MH, Saedodin S, Wongwises S, Toghraie D (2015) An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim 119(3):1817–1824

    Google Scholar 

  19. 19.

    Bashirnezhad K, Rashidi MM, Yang Z, Bazri S, Yan W-M (2015) A comprehensive review of last experimental studies on thermal conductivity of nanofluids. J Therm Anal Calorim 122(2):863–884

    Google Scholar 

  20. 20.

    Afzal A, Nawfal I, Mahbubul I, Kumbar SS (2019) An overview on the effect of ultrasonication duration on different properties of nanofluids. J Therm Anal Calorim 135(1):393–418

    Google Scholar 

  21. 21.

    Giwa S, Sharifpur M, Goodarzi M, Alsulami H, Meyer J (2020) Influence of base fluid, temperature, and concentration on the thermophysical properties of hybrid nanofluids of alumina–ferrofluid: experimental data, modeling through enhanced ANN, ANFIS, and curve fitting. J Therm Anal Calorim 1:19

    Google Scholar 

  22. 22.

    Mirsaeidi A, Yousefi F (2019) Viscosity, thermal conductivity and density of carbon quantum dots nanofluids: an experimental investigation and development of new correlation function and ANN modeling. J Therm Anal Calorim 1:11

    Google Scholar 

  23. 23.

    Zyła G (2017) Viscosity and thermal conductivity of MgO–EG nanofluids. J Therm Anal Calorim 129:171–180

    Google Scholar 

  24. 24.

    Akilu S, Baheta AT, Sharma K (2020) Characterization and modelling of density, thermal conductivity, and viscosity of TiN–W/EG nanofluids. J Therm Anal Calorim 140(4):1999–2010

    Google Scholar 

  25. 25.

    Das SK, Choi SU, Yu W, Pradeep T (2007) Nanofluids: science and technology. Wiley, Hoboken

    Google Scholar 

  26. 26.

    Paul G, Chopkar M, Manna I, Das P (2010) Techniques for measuring the thermal conductivity of nanofluids: a review. Renew Sustain Energy Rev 14(7):1913–1924

    Google Scholar 

  27. 27.

    Czarnetzki W, Roetzel W (1995) Temperature oscillation techniques for simultaneous measurement of thermal diffusivity and conductivity. Int J Thermophys 16(2):413–422

    Google Scholar 

  28. 28.

    Challoner A, Powell R (1956) Thermal conductivities of liquids: new determinations for seven liquids and appraisal of existing values. Proc R Soc Lond A 238(1212):90–106

    Google Scholar 

  29. 29.

    Kurt H, Kayfeci M (2009) Prediction of thermal conductivity of ethylene glycol–water solutions by using artificial neural networks. Appl Energy 86(10):2244–2248

    Google Scholar 

  30. 30.

    Yoo D-H, Hong K, Yang H-S (2007) Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochim Acta 455(1–2):66–69

    Google Scholar 

  31. 31.

    Zhu D, Li X, Wang N, Wang X, Gao J, Li H (2009) Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids. Curr Appl Phys 9(1):131–139

    Google Scholar 

  32. 32.

    Oh D-W, Jain A, Eaton JK, Goodson KE, Lee JS (2008) Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method. Int J Heat Fluid Flow 29(5):1456–1461

    Google Scholar 

  33. 33.

    Bashirnezhad K, Bazri S, Safaei MR, Goodarzi M, Dahari M, Mahian O, Dalkılıça AS, Wongwises S (2016) Viscosity of nanofluids: a review of recent experimental studies. Int Commun Heat Mass Transfer 73:114–123

    Google Scholar 

  34. 34.

    Das PK, Islam N, Santra AK, Ganguly R (2017) Experimental investigation of thermophysical properties of Al2O3–water nanofluid: role of surfactants. J Mol Liq 237:304–312

    Google Scholar 

  35. 35.

    Esfe MH, Saedodin S, Mahmoodi M (2014) Experimental studies on the convective heat transfer performance and thermophysical properties of MgO–water nanofluid under turbulent flow. Exp Thermal Fluid Sci 52:68–78

    Google Scholar 

  36. 36.

    Yu W, Choi S (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 5(1–2):167–171

    Google Scholar 

  37. 37.

    Xue Q (2005) Model for thermal conductivity of carbon nanotube-based composites. Physica B 368(1–4):302–307

    Google Scholar 

  38. 38.

    Maiga SEB, Palm SJ, Nguyen CT, Roy G, Galanis N (2005) Heat transfer enhancement by using nanofluids in forced convection flows. Int J Heat Fluid Flow 26(4):530–546

    Google Scholar 

  39. 39.

    Esfe MH, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises S (2014) Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. J Therm Anal Calorim 118(1):287–294

    Google Scholar 

  40. 40.

    Einstein A (1906) A new determination of molecular dimensions. Ann Phys 19:289–306

    Google Scholar 

  41. 41.

    Batchelor G (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83(1):97–117

    MathSciNet  Google Scholar 

  42. 42.

    Brinkman H (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20(4):571–571

    Google Scholar 

  43. 43.

    Chow T (1993) Viscosities of concentrated dispersions. Phys Rev E 48(3):1977

    Google Scholar 

  44. 44.

    Wang X, Xu X, Choi SU (1999) Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transfer 13(4):474–480

    Google Scholar 

  45. 45.

    Adio SA, Mehrabi M, Sharifpur M, Meyer JP (2016) Experimental investigation and model development for effective viscosity of MgO–ethylene glycol nanofluids by using dimensional analysis, FCM-ANFIS and GA-PNN techniques. Int Commun Heat Mass Transfer 72:71–83

    Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Mohammad Reza Assari or Ashkan Ghafouri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Technical Editor: Ahmad Arabkoohsar.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salari, M., Assari, M.R., Ghafouri, A. et al. Empirical correlations for thermal conductivity and dynamic viscosity of MgO-EG. J Braz. Soc. Mech. Sci. Eng. 43, 111 (2021). https://doi.org/10.1007/s40430-020-02773-w

Download citation


  • Nanofluid
  • Thermal conductivity
  • Viscosity
  • New correlations
  • Particles’ diameter